數(shù)學(xué)分析立體化教材是作者在華南師范大學(xué)講授數(shù)學(xué)分析及相關(guān)課程20多年的經(jīng)驗(yàn)基礎(chǔ)上寫成的,有一些獨(dú)到見(jiàn)解與體會(huì)。全套書在可讀性、系統(tǒng)性和邏輯性上各具特色,并將分層教學(xué)的理念貫穿其中。首先在可讀性方面,對(duì)于重要概念,只給一種定義形式,其他的等價(jià)定義放在思考題或習(xí)題中,對(duì)定理盡量用樸素的方法證明,對(duì)書中的例題表達(dá)盡量詳細(xì),讓
偏微分方程是數(shù)學(xué)學(xué)科的一個(gè)分支,它和其他數(shù)學(xué)分支均有深刻的聯(lián)系,而且在自然科學(xué)和工程技術(shù)中有廣泛的應(yīng)用。本書主要講述廣義函數(shù)與Sobolev空間、偏微分方程的一般理論、橢圓型方程的邊值問(wèn)題、雙曲型方程或拋物型方程的初值問(wèn)題與初邊值問(wèn)題、能量方法、半群方法等內(nèi)容。以此為提高讀者的整體數(shù)學(xué)素質(zhì)提供合適的材料,也為部分讀者進(jìn)
本書以復(fù)雜構(gòu)造深度成像為目標(biāo),系統(tǒng)闡述了波動(dòng)方程成像方法及其計(jì)算。全書共分8章,由易到難,涉及計(jì)算數(shù)學(xué)、科學(xué)計(jì)算、應(yīng)用數(shù)學(xué)、地球物理等領(lǐng)域的相關(guān)知識(shí)。內(nèi)容包括:Kirchhoff偏移、零偏移距記錄合成、復(fù)雜構(gòu)造疊后深度成像、復(fù)雜構(gòu)造疊前深度成像、蘭維多方向分裂隱式波場(chǎng)外推、正多邊形網(wǎng)格上Laplace算子的差分表示、三
本書介紹了神經(jīng)網(wǎng)絡(luò)、微分方程穩(wěn)定性、泛函分析的基本理論和概念、Hopfield型神經(jīng)網(wǎng)絡(luò)的穩(wěn)定性理論、細(xì)胞神經(jīng)網(wǎng)絡(luò)的穩(wěn)定性理論、二階神經(jīng)網(wǎng)絡(luò)的穩(wěn)定性理論、隨機(jī)神經(jīng)網(wǎng)絡(luò)的穩(wěn)定性理論以及神經(jīng)網(wǎng)絡(luò)的應(yīng)用,本書在選材時(shí)注重新穎性,反映了近年來(lái)神經(jīng)網(wǎng)絡(luò)穩(wěn)定性理論的**研究成果,寫作時(shí)體現(xiàn)了通俗性與簡(jiǎn)潔性,論述深入淺出。
本書旨在介紹非線性微分方程研究的主要內(nèi)容、典型方法和**成果,其中包括作者近年的一些研究工作。本書系統(tǒng)地闡述了非線性常微分方程的基本理論、幾何理論、穩(wěn)定性理論、振動(dòng)理論與分支理論等,還分別介紹廠非線性泛函微分方程及非線性脈沖微分方程的相應(yīng)理論。本書致力于核心概念的引入、基小定理的闡述、思想方法的揭示,以及非線性微分方程
流形上的特征值問(wèn)題(英文版)
模型參數(shù)估計(jì)的反問(wèn)題理論與方法
可信性測(cè)度論——處理主觀不確定性的現(xiàn)代方法論(英文版)
本書是為工學(xué)各專業(yè)研究生學(xué)習(xí)泛函分析課程編寫的教材。全書共分4章,分別介紹實(shí)分析基礎(chǔ)、距離空間、Hilbert空間、有界線性算子等內(nèi)容,并在附錄里介紹了上述知識(shí)的一些延伸內(nèi)容:Sobolev空間、正規(guī)正交基、二次變分問(wèn)題等。《BR》本書取材精煉,結(jié)構(gòu)緊湊,關(guān)注應(yīng)用,每章末都附有難易適度的習(xí)題。在注重培養(yǎng)學(xué)生掌握泛函分析
《微積分及其應(yīng)用(中譯本)》是美國(guó)著名數(shù)學(xué)家彼得·拉克斯與康奈爾大學(xué)數(shù)學(xué)教授瑪麗亞·特雷爾合著的單變量微積分教材,內(nèi)容覆蓋了一元微積分的基礎(chǔ),包括:數(shù)列的極限、函數(shù)的連續(xù)性、函數(shù)的微分、可微函數(shù)的基本理論、導(dǎo)數(shù)的應(yīng)用、函數(shù)的積分、積分的方法、積分的近似計(jì)算,以及微分方程。另有兩章介紹復(fù)數(shù)與概率。《微積分及其應(yīng)用(中譯本
非線性方程組在國(guó)防、經(jīng)濟(jì)、工程、管理等許多領(lǐng)域有著廣泛的應(yīng)用。本書系統(tǒng)介紹非線性方程組的數(shù)值方法和相關(guān)理論,主要內(nèi)容包括:牛頓法、擬牛頓法、高斯-牛頓法、Levenberg-Marquardt方法、信賴域方法、子空間方法、非線性最小二乘問(wèn)題、特殊非線性矩陣方程等。
本書主要介紹和總結(jié)了印度著名數(shù)學(xué)家Ramanujan提出的mocktheta函數(shù),它是目前國(guó)際上模形式領(lǐng)域,特別是半整權(quán)模形式領(lǐng)域中討論和研究的熱點(diǎn)問(wèn)題,新思想、新方法、新問(wèn)題和新成果不斷涌現(xiàn)。這一領(lǐng)域的研究與數(shù)論、數(shù)學(xué)物理、弦理論以及黑洞理論等學(xué)科分支都有著重要的聯(lián)系。本書主要內(nèi)容涉及mocktheta函數(shù)的定義、R
給出復(fù)指數(shù)系E(Λ)={e}在C中或C[-R,R]中可逼近的一個(gè)充分必要條件,以及不可逼近的情況下,復(fù)指數(shù)系E(Λ)={e}的極小性,一致極小性和雙正交系的求法,對(duì)={}加上何種條件,使得復(fù)指數(shù)系E(Λ)={e}成為框架(Riesz基、riesz框架、bessel框架),其中C是所有在實(shí)軸R上連續(xù),且當(dāng)t趨向無(wú)窮時(shí),f
本選題屬于本套教材的基礎(chǔ)知識(shí)類,2007.2第一版,銷售14000冊(cè)。全面修訂各章內(nèi)容,比例20%。內(nèi)容包括復(fù)數(shù)與復(fù)變函數(shù)、解析函數(shù)、復(fù)變函數(shù)的積分、級(jí)數(shù)、留數(shù)、共形映射、傅里葉變換、拉普拉斯變換。本書可作為高等院校理、工、經(jīng)管等本專科學(xué)生的教材使用,也可供相關(guān)人員參考使用。
本書根據(jù)“經(jīng)濟(jì)管理類本科數(shù)學(xué)基礎(chǔ)課程教學(xué)基本要求”,以培養(yǎng)“厚基礎(chǔ)、寬口徑、高素質(zhì)”的人才為指導(dǎo)思想,結(jié)合編者多年的教學(xué)實(shí)踐經(jīng)驗(yàn),系統(tǒng)介紹了微積分的積分部分、無(wú)窮級(jí)數(shù)和微分方程的知識(shí)。《BR》全書內(nèi)容包括不定積分、定積分、二重積分、微分方程與差分方程、無(wú)窮級(jí)數(shù)、微積分綜合應(yīng)用案例。本書力求深入淺出、通俗易懂、突出重點(diǎn)、
本書是關(guān)于Banach空間中非線性常微分方程邊值問(wèn)題的一本專著。全書共8章,在介紹非線性泛函方法的基礎(chǔ)上,分別對(duì)二階非線性微分方程邊值問(wèn)題、二階超前型和滯后型微分方程邊值問(wèn)題、二階脈沖微分方程邊值問(wèn)題、二階混合型脈沖微分方程邊值問(wèn)題、帶p-Laplace算子的二階脈沖微分方程邊值問(wèn)題、無(wú)窮區(qū)間中二階脈沖微分方程邊值問(wèn)題
本書是由電子科技大學(xué)成都學(xué)院“數(shù)學(xué)建模與工程教育研究項(xiàng)目組”的教師,依據(jù)教育部頒發(fā)的《關(guān)于高等工業(yè)院校微積分課程的教學(xué)基本要求》,以培養(yǎng)應(yīng)用型科技人才為目標(biāo)而編寫的。與本書配套的系列教材還有《微積分與數(shù)學(xué)模型(上冊(cè))》、《線性代數(shù)與數(shù)學(xué)模型》、《概率統(tǒng)計(jì)與數(shù)學(xué)模型》。《BR》本書分5章,主要介紹多元函數(shù)微分學(xué)及其應(yīng)用、
本書主要討論組合數(shù)學(xué)和堆壘數(shù)論中的整數(shù)分拆理論.在內(nèi)容方面,首先介紹了研究整數(shù)分拆的重要工具:雙射證明、Ferrers圖和生成函數(shù),并以此證明了著名的Euler恒等式和Euler五角數(shù)定理.本書取材廣泛,不僅討論了Rogers-Ramanujan恒等式、階梯教室分拆、平面分拆等問(wèn)題,還建立了整數(shù)分拆與Young表、鉤長(zhǎng)
《常微分方程基本問(wèn)題與注釋》是作者在上海師范大學(xué)主講數(shù)學(xué)專業(yè)本科生常微分方程課程的教學(xué)與學(xué)習(xí)配套用書,所采用教材是作者與合作者所編寫的《常微分方程》(高等教育出版社).《常微分方程基本問(wèn)題與注釋》的主要內(nèi)容可分為兩部分.一部分是針對(duì)教材的每一節(jié)內(nèi)容列出了五個(gè)基本問(wèn)題,供學(xué)生課前預(yù)習(xí)時(shí)參考,通過(guò)問(wèn)題引領(lǐng),有的放矢地讓學(xué)生
《數(shù)學(xué)分析基本問(wèn)題與注釋》是作者在上海師范大學(xué)主講數(shù)學(xué)分析**學(xué)期課程的教學(xué)配套用書.《數(shù)學(xué)分析基本問(wèn)題與注釋》的主要內(nèi)容可分為兩部分,一部分是針對(duì)教材的每一節(jié)內(nèi)容列出了五個(gè)基本問(wèn)題,學(xué)生可以在課前預(yù)習(xí)時(shí)參考,通過(guò)問(wèn)題引領(lǐng),有的放矢地讓學(xué)生自學(xué)教材,理解了這些問(wèn)題就領(lǐng)會(huì)了所學(xué)內(nèi)容.另一部分是作者根據(jù)該節(jié)內(nèi)容和所列問(wèn)題,