關(guān)于我們
書單推薦
新書推薦

基于INLA的貝葉斯推斷 (Bayesian inference with INLA)

基于INLA的貝葉斯推斷 (Bayesian inference with INLA)

定  價(jià):89 元

        

  • 作者:VirgilioGomez-Rubio
  • 出版時(shí)間:2023/8/1
  • ISBN:9787040608199
  • 出 版 社:高等教育出版社
  • 中圖法分類:O212 
  • 頁碼:
  • 紙張:膠版紙
  • 版次:
  • 開本:16開
9
7
6
8
0
7
8
0
1
4
9
0
9

積分嵌套拉普拉斯近似(Integrated Nested Laplace Approximation,INLA)是一種新的近似貝葉斯計(jì)算方法,相比傳統(tǒng)的馬爾可夫鏈蒙特卡羅(MCMC)方法,它可以高效地?cái)M合多種貝葉斯模型。INLA旨在解決潛在高斯馬爾可夫隨機(jī)場(chǎng)模型參數(shù)的邊際推斷,利用模型中潛在變量的條件獨(dú)立性來提高計(jì)算速度。 《基于INLA的貝葉斯推斷》提供了便于實(shí)施模型擬合的R包及其使用指南。本書介紹了INLA算法的基本原理以及如何用與其相關(guān)的R包擬合一大類模型,涵蓋的主題包括混合效應(yīng)模型、多層次模型、空間和時(shí)間模型、平滑方法、生存分析、缺失值的插補(bǔ),以及混合模型。本書討論了INLA包的高級(jí)功能以及如何擴(kuò)展先驗(yàn)和INLA包中可用的潛在模型。書中的所有例子都是完全可復(fù)現(xiàn)的,數(shù)據(jù)集和R代碼可通過掃描封底二維碼獲得。 這本書的例子涵蓋了生物統(tǒng)計(jì)學(xué)、計(jì)量經(jīng)濟(jì)學(xué)、教育、環(huán)境科學(xué)、流行病學(xué)、公共衛(wèi)生和社會(huì)科學(xué)等主題。這將有助于來自不同領(lǐng)域、在貝葉斯推理方面有一定背景的研究人員,應(yīng)用INLA方法解決他們工作中遇到的問題。

 你還可能感興趣
 我要評(píng)論
您的姓名   驗(yàn)證碼: 圖片看不清?點(diǎn)擊重新得到驗(yàn)證碼
留言內(nèi)容