《離散數(shù)學(xué)(第2版)》在原有基礎(chǔ)上進(jìn)行了更新,增加了一些典型的應(yīng)用實(shí)例,并對(duì)例題和習(xí)題進(jìn)行了補(bǔ)充!峨x散數(shù)學(xué)(第2版)》分為數(shù)理邏輯、集合論、代數(shù)結(jié)構(gòu)、組合數(shù)學(xué)、圖論、初等數(shù)論6個(gè)部分,既有嚴(yán)謹(jǐn)、系統(tǒng)的理論闡述,也有豐富的、面向計(jì)算機(jī)科學(xué)技術(shù)發(fā)展的應(yīng)用實(shí)例,同時(shí)配有大量的典型例題與練習(xí)。各章內(nèi)容按照模塊化結(jié)構(gòu)組織,可以適應(yīng)不同的教學(xué)要求!峨x散數(shù)學(xué)(第2版)》配套有電子教案和學(xué)習(xí)指導(dǎo)與習(xí)題解析!峨x散數(shù)學(xué)(第2版)》可以作為普通高等學(xué)校計(jì)算機(jī)科學(xué)與技術(shù)、軟件工程、信息與計(jì)算科學(xué)等專業(yè)本科生離散數(shù)學(xué)課程教材,也可以供其他專業(yè)學(xué)生和科技人員參考。
緊密圍繞離散數(shù)學(xué)的基本概念、基本理論選材,體系嚴(yán)謹(jǐn),內(nèi)容豐富;面向計(jì)算機(jī)科學(xué)技術(shù),介紹了很多離散數(shù)學(xué)在計(jì)算機(jī)科學(xué)技術(shù)中的應(yīng)用。
強(qiáng)化描述與分析離散結(jié)構(gòu)的基本方法與能力的訓(xùn)練,配有豐富的例題和習(xí)題;例題有針對(duì)性,分析講解到位;習(xí)題易難結(jié)合,適合學(xué)生課后練習(xí)。
知識(shí)體系采用模塊化結(jié)構(gòu),可以根據(jù)不同的教學(xué)要求進(jìn)行調(diào)整;語言通俗易懂,深入淺出,突出重點(diǎn)、難點(diǎn),提示易于出錯(cuò)的地方。
輔助教學(xué)資源豐富,配有用于習(xí)題課、包含上千道習(xí)題的教學(xué)輔助用書《離散數(shù)學(xué)學(xué)習(xí)指導(dǎo)與習(xí)題解析》第2版,電子教案,網(wǎng)絡(luò)課程等。
耿素云,北京大學(xué)信息科學(xué)技術(shù)學(xué)院教授。一直從事數(shù)學(xué)教學(xué)工作,致力于離散數(shù)學(xué)教學(xué)20余年,出版教材、教學(xué)參考書20余本,其中包含多部國(guó)家級(jí)規(guī)劃教材和北京市精品教材。被評(píng)為北京市教書育人、服務(wù)育人先進(jìn)工作者,北京市優(yōu)秀教師,北京大學(xué)“我愛我?guī)熞?受學(xué)生愛戴的老師”;曾獲北京市教育教學(xué)成果(高等教育)一等獎(jiǎng),北京大學(xué)教學(xué)成果一等獎(jiǎng)、大眾電腦獎(jiǎng)教金、桐山獎(jiǎng)教金及教學(xué)優(yōu)秀獎(jiǎng)等。
張立昂,北京大學(xué)信息科學(xué)技術(shù)學(xué)院教授、博士生導(dǎo)師。一直從事數(shù)學(xué)和理論計(jì)算機(jī)科學(xué)的教學(xué)與研究工作,主要研究方向是計(jì)算復(fù)雜性理論和算法設(shè)計(jì)與分析,發(fā)表論文20余篇,出版教材、教學(xué)參考書、譯著20余本,其中包含多部國(guó)家級(jí)規(guī)劃教材和北京市精品教材。曾獲教育部科學(xué)技術(shù)進(jìn)步二等獎(jiǎng),北京市教育教學(xué)成果(高等教育)一等獎(jiǎng),北京人學(xué)教學(xué)成果一等獎(jiǎng)、正大獎(jiǎng)教金及教學(xué)優(yōu)秀獎(jiǎng)等。
第1部分 數(shù)理邏輯
第1章 命題邏輯的基本概念
1.1 命題與聯(lián)結(jié)詞
1.2 命題公式及其賦值
習(xí)題1
第2章 命題邏輯等值演算
2.1 等值式
2.2 析取范式與合取范式
2.3 聯(lián)結(jié)詞的完備集
2.4 可滿足性問題與消解法
習(xí)題2
第3章 命題邏輯的推理理論
3.1 推理的形式結(jié)構(gòu)
3.2 自然推理系統(tǒng)P
3.3 消解證明法
習(xí)題3
第4章 一階邏輯基本概念
4.1 一階邏輯命題符號(hào)化
4.2 一階邏輯公式及其解釋
習(xí)題4
第5章 一階邏輯等值演算與推理
5.1 一階邏輯等值式與置換規(guī)則
5.2 一階邏輯前束范式
5.3 一階邏輯的推理理論
習(xí)題5
第2部分 集合論
第6章 集合代數(shù)
6.1 集合的基本概念
6.2 集合的運(yùn)算
6.3 有窮集的計(jì)數(shù)
6.4 集合恒等式
習(xí)題6
第7章 二元關(guān)系
7.1 有序?qū)εc笛卡兒積
7.2 二元關(guān)系
7.3 關(guān)系的運(yùn)算
7.4 關(guān)系的性質(zhì)
7.5 關(guān)系的閉包
7.6 等價(jià)關(guān)系與劃分
7.7 偏序關(guān)系
習(xí)題7
第8章 函數(shù)
8.1 函數(shù)的定義與性質(zhì)
8.2 函數(shù)的復(fù)合與反函數(shù)
8.3 雙射函數(shù)與集合的基數(shù)
8.4 一個(gè)電話系統(tǒng)的描述實(shí)例
習(xí)題8
第3部分 代數(shù)結(jié)構(gòu)
第9章 代數(shù)系統(tǒng)
9.1 二元運(yùn)算及其性質(zhì)
9.2 代數(shù)系統(tǒng)
9.3 代數(shù)系統(tǒng)的同態(tài)與同構(gòu)
習(xí)題9
第10章 群與環(huán)
10.1 群的定義及性質(zhì)
10.2 子群與群的陪集分解
10.3 循環(huán)群與置換群
10.4 環(huán)與域
習(xí)題10
第11章 格與布爾代數(shù)
11.1 格的定義與性質(zhì)
11.2 分配格、有補(bǔ)格與布爾代數(shù)
習(xí)顥11
第4部分 組合數(shù)學(xué)
第12章 基本的組合計(jì)數(shù)公式
12.1 加法法則與乘法法則
12.2 排列與組合
12.3 二項(xiàng)式定理與組合恒等式
12.4 多項(xiàng)式定理
習(xí)題12
第13章 遞推方程與生成函數(shù).
13.1 遞推方程的定義及實(shí)例
13.2 遞推方程的公式解法
13.3 遞推方程的其他解法.
13.4 生成函數(shù)及其應(yīng)用
13.5 指數(shù)生成函數(shù)及其應(yīng)用
13.6 cataIan數(shù)與stirling數(shù)
習(xí)題13
第5部分 圖 論
第14章 圖的基本概念
14.1 圖
14.2 通路與回路
14.3 圖的連通性
14.4 圖的矩陣表示
14.5 圖的運(yùn)算
習(xí)題14
第15章 歐拉圖與哈密頓圖
15.1 歐拉圖
15.2 哈密頓圖
15.3 最短路問題、中國(guó)郵遞員問題與貨郎擔(dān)問題
習(xí)題15
第16章 樹
16.1 無向樹及其性質(zhì)
16.2 生成樹
16.3 根樹及其應(yīng)用
習(xí)題16
第17章 平面圖
17.1 平面圖的基本概念
17.2 歐拉公式
17.3 平面圖的判斷
17.4 平面圖的對(duì)偶圖
習(xí)題17
第18章 支配集、覆蓋集、獨(dú)立集、匹配與著色
18.1 支配集、點(diǎn)覆蓋集與點(diǎn)獨(dú)立集
18.2 邊覆蓋集與匹配
18.3 二部圖中的匹配
18.4 點(diǎn)著色
18.5 地圖著色與平面圖的點(diǎn)著色
18.6 邊著色
習(xí)題18
第6部分 初等數(shù)論
第19章 初等數(shù)論
19.1 素?cái)?shù)
19.2 最大公約數(shù)與最小公倍數(shù)
19.3 同余
19.4 一次同余方程
19.5 歐拉定理和費(fèi)馬小定理
19.6 初等數(shù)論在計(jì)算機(jī)科學(xué)技術(shù)中的幾個(gè)應(yīng)用
習(xí)題19
名詞與術(shù)語索引
符號(hào)注釋
參考文獻(xiàn)