整數(shù)剩余類環(huán)上導出序列,主要介紹環(huán)上線性遞歸序列基礎(chǔ)理論、本原序列的權(quán)位壓縮導出序列的保熵性和模2壓縮導出序列的保熵性;第二部分是帶進位反饋移位寄存器(FCSR)序列,主要介紹FCSR序列算術(shù)表示、有理逼近算法和極大周期FCSR序列的密碼性質(zhì);第三部分是非線性反饋移位寄存器(NFSR)序列,主要介紹NFSR序列簇的線性
本書引進的改進傅里葉級數(shù),是在閉區(qū)間上可以一致收斂地逼近任意形式的擬光滑函數(shù)的級數(shù)。本書給出了:變系數(shù)線性常微分方程的通用求解方法(這里變系數(shù)可以是連續(xù)函數(shù),也可以是間斷的函數(shù));對具有各階奇異點的奇異性方程(正則或非正則)給出了求解的原則;對幾種常見的奇異常微分方程給出了詳盡的求解過程和計算算例;完滿地求解了兩個典型
本書以奇攝動控制系統(tǒng)為對象,以Kokotovic奇攝動方法為框架,并以輸入狀態(tài)穩(wěn)定(ISS)概念作為刻畫外部干擾的工具,在Tikhonov極限定理的基礎(chǔ)上,首先討論了ISS分析與控制,包括基于狀態(tài)觀察器的控制器設(shè)計;其次對具有內(nèi)部不確定性和外部干擾輸入的奇攝動控制系統(tǒng),分別研究了相應(yīng)魯棒ISS穩(wěn)定與鎮(zhèn)定;然后分別討論了
本書總結(jié)了近年來作者在常微分方程邊值問題和定性理論方面的部分研究成果,共九章。第1-6章利用Leray-Schauder度、迭合度理論、錐上不動點理論、上下解方法、**值原理和單調(diào)迭代技巧研究了非線性常微分方程、時標動力方程非局部邊值問題的可解性、正解的存在性和多解性以及解的收斂性。第7-9章主要介紹種群動力系統(tǒng)中離散
本書旨在鞏固數(shù)學分析基礎(chǔ)知識,補充數(shù)學分析中的一些重要方法,提高分析數(shù)學問題的思維能力和靈活運用多種知識解決問題的能力;究蚣転椋簩(shù)學分析的一些重要知識點進行回顧和梳理;介紹一些重要的方法,特別是階的估計的方法和思想;通過一些考研、競賽試題等進行解題思路分析,對方法進行應(yīng)用和強化,注重方法上的分析和講解。內(nèi)容包括極
許多人在中學數(shù)學課堂上學習過“微積分”!禕R》微積分是用來計算“變化”的數(shù)學,在計算如位置的變化、速度的變化、股價的變化等多種變化時,微積分發(fā)揮著重要作用,甚至可以說微積分幾乎是不可或缺的。《BR》本書在第1章中,對微積分的精髓進行了精要講解。在接下來的第2章中,追溯微積分誕生的時代背景及數(shù)學家的思考,探究復(fù)雜的微積
信念修正是人工智能的研究分支之一。在哲學、認知心理學和數(shù)據(jù)庫更新等領(lǐng)域中,很早就有對信念修正的討論和研究。AGM公設(shè)在20世紀70年代末被提出,它是任何一個合理的信念修正算子應(yīng)該滿足的最基本條件。本書作者李未院士在20世紀80年代中期提出了R-演算,這是一個滿足AGM公設(shè)、非單調(diào)的并且類似于Gentzen推理系統(tǒng)的信念
本書是分數(shù)階系統(tǒng)與高階邏輯形式化驗證的基礎(chǔ)理論研究著作。分數(shù)階系統(tǒng)是建立在分數(shù)階微積分方程理論上實際系統(tǒng)的數(shù)學模型。分數(shù)階微積分方程是擴展傳統(tǒng)微積分學的一種直接方式,即允許微積分方程中對函數(shù)的階次選擇分數(shù),而不僅是現(xiàn)有的整數(shù)。分數(shù)階微積分不僅為系統(tǒng)科學提供了一個新的數(shù)學工具,它的廣泛應(yīng)用也表明了實際系統(tǒng)動態(tài)過程本質(zhì)上是
本書基于高階約束流、Hamilton結(jié)構(gòu)及Sato理論提出了構(gòu)造孤立子系統(tǒng)的Rosochatius形變、Kupershmidt形變、帶源形變以及擴展的高維可積系統(tǒng)的一般方法,并以光纖通信及流體力學中的重要模型,如超短脈沖方程、Hirota-方程、Camassa-Holm型方程及q-形變的KP方程等為例詳細闡述了我們提出
本書根據(jù)數(shù)學分析課程知識點的正常教學順序設(shè)計,共六十講。主要通過極限、實數(shù)基本定理、微積分和無窮級數(shù)等教學內(nèi)容介紹數(shù)學分析中的思想方法。書中內(nèi)容既有細致到具體小知識點的思想方法,也有覆蓋到數(shù)學分析大知識體系的思想方法。通過這些基本思想方法的講解,使讀者能夠在較短時間內(nèi)掌握數(shù)學分析思想,對數(shù)學分析內(nèi)容有深刻的理解,也可以