翼滑艇是江蘇科技大學(xué)提出來的一種新型高速船。它是綜合了滑行艇和水翼艇的性能而得到的一種新型復(fù)合船型,是以滑行艇的滑行面作為船體,而在首部安裝水翼。這樣水翼可以提供支撐船體的升力,有助于減小滑行艇的海浪拍擊、提高船體的穩(wěn)定性,同時(shí)在翼航狀態(tài)時(shí),相比較水翼艇來說,部分船體在水下,其操縱性得到了改善。陳淑玲編*的《翼滑艇水動(dòng)力特性研究》利用實(shí)驗(yàn)和數(shù)值計(jì)算的方法對(duì)翼滑艇的水動(dòng)力特性進(jìn)行了初步研究。內(nèi)容包括水翼艇及機(jī)翼理論、滑行艇水動(dòng)力特性實(shí)驗(yàn)研究、翼滑艇水動(dòng)力特性實(shí)驗(yàn)研究、高速船水動(dòng)力特性數(shù)值研究實(shí)現(xiàn)、網(wǎng)格依賴性和計(jì)算域尺寸研究、滑行艇水動(dòng)力特性在定常流動(dòng)中的數(shù)值研究、翼滑艇水動(dòng)力特性在定常流動(dòng)中的數(shù)值研究、翼滑艇水動(dòng)力特性在非定常流動(dòng)中的數(shù)值研究等。
本書可供從事高速船水動(dòng)力特性研究的科研人員和設(shè)計(jì)人員以及有關(guān)高等院校的教師和研究生參考。
1 INTRODUCTION
1.1 Planing Hull Craft
1.2 Hydrofoil Craft
1.3 Gliding-hydrofoil Craft
2 HYDROFOIL CRAFF AND FOIL THEORY
2.1 Introduction
2.2 Main particulars of hydrofoil crafts
2.3 Linearized Theory for a 2-Dimensional Foil Section
2.4 Cavitation
2.4.1 Background
2.4.2 Cavitation criterion
2.5 Resistance of hydrofoil craft
3 EXPERIMENTAL STUDY OF HYDRODYNAMICS OF PLANING CRAFTS
3.1 Ship model design
3.1.1 Body plan of the planing craft model
3.1.2 Building ship model
3.2 Experimental methods
3.2.1 Towing tank
3.2.2 Linear Displacement Sensor
3.2.3 Experimental techniques
3.2.4 Ship model and test conditions
3.2.5 Measured data and post-processing
3.3 Results and discussion
3.3.1 Resistance coefficient
3.3.2 Optimum Trim angle
3.3.3 Comments on the empirical equation
4 EXPERIMENTAL STUDY OF HYDRODYNAMICS OF GHC
4.1 Hydrofoil design
4.1.1 Lift calculation
4.1.2 Hydrofoil positions
4.2 Experimental methods
4.3 Results and discussion
4.3.1 Hydrodynamics of the GHC ship model
4.3.2 Effect of submergence depth of the hydrofoil
4.3.3 Effect Of The Initial Attack Angles Of The Hydrofoil...
4.3.4 Effect of the Hydrofoil
5 IMPLEMENTATION OF CFD STUDYING HYDRODYNAMIC FEATURE OF HIGH-SPEED CRAFr
5.1 Introduction
5.2 Basic theories and the implementation of the FLUENT to model high-speed
5.3 Turbulence models
5.4 Generation of computational mesh
5.5 Boundary conditions
5.6 Free surface flow model
6 INVESTIGATION OF MESH DEPENDENCE AND COMPUTATIONAL DOMAIN SIZES
6.1 Case I : NACA 4412 hydrofoil
6.1.1 The calculation model and boundary condition
6.1.2 Numerical results
6.2 Case II : Wigley hull
6.2.1 The calculation model and boundary condition
6.2.2 Calculation model and results
6.2.3 Effect of sizes of computation domain
6.2.4 Effect of grid size
7 NUMERICAL INVESTIGATIONS ON HYDRODYNAMIC CHARACTERISTICS OF A PLANING CRAFI" IN STEADY FLOW
7.1 Calculation model for planing craft
7.2 Grid Generation and Turbulence model
7.3 Boundary condition and initial condition
7.4 Numerical results
7.4.1 Validation of resistance coefficients with different Froude numbers
7.4.2 Wave patterns corresponding to different Reynolds numbers
7.4.3 Effect of sizes of computation domain
7.4.4 Pressure distribution around the hull
8 NUMERICAL STUDY OF HYDRODYNAMIC CHARACTERISTICS OF A GLIDING-HYDROFOIL CRAFt IN STEADY FLOW
8.1 Calculation model for the gliding-hydrofoil craft
8.2 Numerical results and discussion
8.2.1 Validation of resistance coefficients with different Froude numbers
8.2.2 Wave patterns for different Froude numbers
8.2.3 Pressure distribution around the hydrofoil
8.3 Further investigation on hydrodynamic characteristics of gliding-hydrofoil craft in steady flow
9 HIGH-SPEED GLIDING-HYDROFOIL CRAFI" IN UNSTEADY FLOW
9.1 Craft motion model from v = vs to v = 0
9.1.1 Computational domain
9.1.2 Boundary conditions and solution settings
9.1.3 Numerical results
9.2 Craft motion model fromU = 0 to v = v
9.3 Gliding-hydrofoil craft with continuous change of incoming flow angle
9.3.1 Calculation model and domain
9.3.2 Numerical results
REFERENCE
INDEX