CIMPA-UNESCO-CHINA暑期學(xué)!白允匦问脚cL-函數(shù)”于2010年8月1日至14日在山東大學(xué)威海校區(qū)舉辦,該國(guó)際暑期學(xué)校受聯(lián)合國(guó)教科文組織資助,邀請(qǐng)的演講人都是本領(lǐng)域著名的專(zhuān)家。劉建亞主編的《自守形式與L-函數(shù)》匯集了這次暑期學(xué)校以下演講人的講義:J.Cogdell,G.Harcos,李小青,P.Michel,A.Reznikov,F(xiàn).Shahidi以及葉揚(yáng)波!蹲允匦问脚cL-函數(shù)》涵蓋自守形式、L-函數(shù)、譜理論及表示理論等方面的內(nèi)容,既給出了自守形式與L-函數(shù)很好的介紹,也指出了其算術(shù)應(yīng)用!蹲允匦问脚cL-函數(shù)》不僅是本領(lǐng)域?qū)<覀冇袃r(jià)值的參考書(shū),也是研究生開(kāi)展研究時(shí)極好的入門(mén)書(shū)。
L-functions and Functoriality James W. Cogdell Ⅰ L-functions for GL(n) and Converse Theorems 1 Modular Forms and Automorphic Representations 2 L-functions and Functoriality James W. Cogdell Ⅰ L-functions for GL(n) and Converse Theorems 1 Modular Forms and Automorphic Representations 2 L-functions for G/i and Converse Theorems Ⅱ L-functions via Eisenstein Series 3 The Origins: Langlands 4 The Method: Langlands-Shahidi 5 The Results: Shahidi Ⅲ Functoriality 6 Langlands Conjectures and Functoriality 7 The Converse Theorem and Functoriality 8 Symmetric Powers and Applications ReferencesTwisted Hilbert Modular L-functions and Spectral Theory Gergely Harcos 1 Lecture One: Some Quadratic Forms 2 Lecture Two: More Quadratic Forms 3 Lecture Three: Preliminaries from Number Theory 4 Lecture Four: Subconvexity of Twisted /-functions Acknowledgments ReferencesThe Voronoi Formula for the rlyiple Divisor Function Xiaoqin.g Li 1 Introduction 2 Proof of the Main Theorem Acknowledgments ReferencesLinnik's Ergodic Method and the Hasse Principle for Ternary Quadratic Forms Philippe Michel 1 Foreword 2 Integral Quadratic Forms 3 TheHassePrinciple 4 Quadratic Forms over Lattices 5 Equidistribution on Adelic Quotient 6 Properties of the Adeles 7 The Hasse Integral Principle and Equidistribution of Adelic Orbits 8 The Ergodic Method ReferencesAutomorphic Periods and Representation Theory Andre Reznikov 1 Automorphic Representations and Frobenius Reciprocity 2 Bounds on Periods and Representation Theory Acknowledgments ReferencesEisenstein Series, L-functions and Representation Theory Freydoon Shahidi 1 Preliminaries 2 L-Groups, L-Functions and Generic Representations 3 Eisenstein Series and Intertwining Operators; The Constant Term 4 Constant Term and Automorphic /-Functions 5 Examples 6 Local Coefficients, Nonconstant Term and the Crude Functional Equation 7 The Main Induction, Functional Equations and Multiplicativity 8 Twists by Highly Ramified Characters, Holomorphy and Boundedness 9 Examples of Functoriality with Applications 10 Applications to Representation Theory ReferencesLecture Notes on Some Analytic Properties of Automorphic L-functions for SL2 (Z) Yangbo Ye 1 Introduction 2 An Integral Representation and Functional Equation 3 A Converse Theorem 4 The Phragmen-Lindelof Principle and Convexity 5 The Rankin-Selberg Theory References