Organic Optoelectronic Materials and Devices 有機(jī)光電材料與器件(葉常青)(英文版)
定 價:68 元
- 作者:葉常青、李琳、梁作芹 等 編著
- 出版時間:2024/9/1
- ISBN:9787122455789
- 出 版 社:化學(xué)工業(yè)出版社
- 中圖法分類:TN204
- 頁碼:213
- 紙張:
- 版次:01
- 開本:16開
本書為英文版教材,系統(tǒng)介紹了有機(jī)光電材料與器件的基本概念、原理及應(yīng)用。全書共分10章,首先概述了分子吸收光譜、熒光與磷光相關(guān)基礎(chǔ)知識以及變色材料與器件的分子變色機(jī)理、基本概念及應(yīng)用。之后按照材料功能特點(diǎn)重點(diǎn)闡述了有機(jī)發(fā)光二極管(OLED)、液晶(LC)、有機(jī)場效應(yīng)晶體管(OEFT)、有機(jī)太陽能電池(OSC)、有機(jī)光導(dǎo)體(OPC)、雙光子吸收等類型材料與器件所涉及的基本概念、器件結(jié)構(gòu)與工作原理、材料分子設(shè)計及應(yīng)用領(lǐng)域。
本書可作為材料化學(xué),特別是功能材料專業(yè)高年級本科生和研究生雙語教材。
葉常青,蘇州科技大學(xué),功能材料系副主任、副教授,中國光學(xué)功能膜材料標(biāo)準(zhǔn)化技術(shù)委員會委員、中國印刷技術(shù)協(xié)會標(biāo)簽與特種印刷分會委員、全國印刷電子與智能包裝產(chǎn)業(yè)聯(lián)合體顧問專家委員會委員和《信息記錄材料》雜志編委,F(xiàn)為江蘇省333工程中青年科學(xué)技術(shù)帶頭人、江蘇省第十四批“六大人才高峰”;江蘇高校青藍(lán)工程優(yōu)秀青年骨干教師;蘇州市高等院校、科研院所緊缺高層次人才;蘇州科技大學(xué)2017年高端人才培育計劃——“拔尖人才成長計劃”。獲得共青團(tuán)蘇州市委“奮進(jìn)十三五、青春建新功——蘇州好青年”稱號、中科院青年科學(xué)獎、盧嘉錫科學(xué)教育基金會優(yōu)秀研究獎、蘇州科技大學(xué)“五四青年”獎?wù)、蘇州科技大學(xué)優(yōu)秀教師、蘇州科技大學(xué)“先進(jìn)個人”等榮譽(yù)獎勵。
圍繞“微納有機(jī)光電材料與器件”科研方向,主持國家、省部級項目10余項,包括國家自然科學(xué)基金面上項目、江蘇省優(yōu)秀青年基金等。在EnergyEnviron.Sci.,J.Am.Chem.Soc.;Macromolecules等SCI雜志發(fā)表論文60余篇,12篇被選為封面。獲中國真空學(xué)會優(yōu)秀博士論文獎(2012);蘇州市自然科學(xué)優(yōu)秀學(xué)術(shù)論文二等獎;主要參與人獲中國石油化工行業(yè)協(xié)會技術(shù)發(fā)明三等獎。
同時積極投身科研成果應(yīng)用轉(zhuǎn)換,已授權(quán)發(fā)明專利22項,申請PCT專利2項。兩項功能涂層技術(shù)成果轉(zhuǎn)化獲江蘇省科技廳高新技術(shù)產(chǎn)品認(rèn)定。先后與德國奧迪公司、華為、九陽、蘇州市藥監(jiān)局、蘇州市疾控中心等單位開展應(yīng)用合作。開發(fā)光子晶體增強(qiáng)長余輝應(yīng)急涂層材料,已應(yīng)用在“湖南省人防辦人防物資庫項目”、“江蘇省靖江市人防指揮所”等民生4工程項目。
教研教改工作方面,主持“有機(jī)光電材料與器件”專業(yè)課,入選江蘇省級優(yōu)秀研究生課程,蘇州科技大學(xué)“yi流課程”和“精品視頻課程”等校級教改項目建設(shè),指導(dǎo)學(xué)生獲2013年江蘇省普通高校本科優(yōu)秀畢業(yè)論文二等獎;指導(dǎo)團(tuán)隊連續(xù)獲得2016、2017年“江蘇省普通高校本科優(yōu)秀畢業(yè)論文團(tuán)隊”獎;獲蘇州科技大學(xué)教學(xué)成果二等獎(排名1),以排名2獲蘇州科技大學(xué)教學(xué)成果特等獎一項、二等獎兩項。獲蘇州市教學(xué)成果獎(高等教育類)特等獎(排名2)。同時積極指導(dǎo)大學(xué)生雙創(chuàng)活動,2017年獲江蘇省大學(xué)生科技創(chuàng)新成果展銅獎。指導(dǎo)學(xué)生連續(xù)獲得2014、2016年“創(chuàng)青春”大學(xué)生創(chuàng)業(yè)大賽江蘇省金獎,及國家銀獎、銅獎,獲創(chuàng)青春江蘇省優(yōu)秀指導(dǎo)教師。
Chapter 1 Molecular UV-Vis Absorption Spectrum 1
1.1 Basic Properties of Light 1
1.2 Electron Transition 2
1.2.1 Ground State and Excited State 2
1.2.2 Electron Transition Type 4
1.2.3 Transition Allowed and Transition Forbidden 4
1.3 UV-Vis Absorption Spectrum 6
1.3.1 Absorption Rule 6
1.3.2 Lamber-Beer’s Law 6
1.3.3 UV-Vis Absorption Spectrum 7
1.3.4 UV-Vis Absorption Spectrometer 8
1.4 Factors of Influence on the UV-Vis Absorption Spectrum 8
1.4.1 Basic Concepts 8
1.4.2 Conjugation Effect 11
1.4.3 Steric Effect 13
1.4.4 Solvent Effect 14
1.4.5 Substituent Effect 17
1.4.6 Concentration Effect 18
1.4.7 Absorption Spectrum of Molecular Aggregates 19
1.5 Molecular Structure and Color 20
Chapter 2 Fluorescence Spectra and Fluorescent Sensors 24
2.1 Luminescence 24
2.1.1 Excited State and Decay 24
2.1.2 Singlet State and Triplet State 25
2.1.3 Excited State Decay 25
2.1.4 Fluorescence and Phosphorescence 26
2.1.5 Internal Conversion and Intersystem Crossing 27
2.1.6 Jablonski Diagram 27
2.2 Fluorescence Spectra 28
2.2.1 Fluorescence Emission Spectra 28
2.2.2 Fluorescence Spectrum Characteristics 29
2.2.3 Fluorescence Properties 31
2.3 Factors Influencing Fluorescence Properties 33
2.3.1 Conjugation Effect 33
2.3.2 Planar Effect 34
2.3.3 Substituent Effect 35
2.3.4 Solvent Effect 36
2.3.5 Concentration Effect 39
2.3.6 Other Factors 41
2.4 Phosphorescence Emission 43
2.5 Radiative Energy Transfer and Non-radiative Energy Transfer 44
2.5.1 Radiative Energy Transfer 45
2.5.2 Non-radiative Energy Transfer 48
2.5.3 Stern-Volmer Quenching Equation 49
2.6 Fluorescence Chemical Sensor 51
2.6.1 Structure of Fluorescent Sensing Molecule 51
2.6.2 Signal Expression of Fluorescence Sensor 52
2.6.3 Examples of Fluorescent Sensors 55
Chapter 3 Photochromic and Electrochromic Materials 58
3.1 Photochromism 58
3.1.1 Chromic Materials 58
3.1.2 Photochromism 58
3.1.3 Photochromism Mechanism 58
3.2 Photochromic Materials 59
3.2.1 Azo Derivatives 59
3.2.2 Salicylideneanilines (Schiff’s Base) 62
3.2.3 Diarylethenes 63
3.2.4 Spiropyrans 65
3.3 Photochromic Materials Applications 65
3.3.1 Optical Switches 65
3.3.2 Optical Information Storage 66
3.4 Electrochromic Materials 67
3.4.1 Viologens 68
3.4.2 Polyanilines 69
3.4.3 Metal Phthalocyanines (Phthalocyanine Complexes) 71
3.4.4 Polypyridyl Metal Complexes 74
3.4.5 Electrochromic Parameters 77
3.4.6 Electrochromic Devices 80
3.4.7 Electrochromic Device Applications 82
Chapter 4 Organic Light-emitting Diodes 84
4.1 OLED Research Development 84
4.2 OLEDs Structures 85
4.2.1 Single-layer OLED 86
4.2.2 Multi-layer OLED 87
4.3 OLEDs Product Categories 87
4.4 OLEDs Working Principles 88
4.5 OLEDs Performance Parameters 90
4.6 OLED Materials 93
4.6.1 Organic Luminescent Materials 94
4.6.2 Carrier Transport Materials 97
4.6.3 Electrode Materials of OLEDs 98
4.7 Key Factors on OLED Performances 99
4.7.1 Energy Level Matching 99
4.7.2 Mobility Matching 103
4.8 OLED Production Process 104
Chapter 5 Liquid Crystal Display Materials and Technology 107
5.1 Introduction 107
5.2 Liquid Crystals Classification 108
5.3 Liquid Crystals Chemical Structures 109
5.4 Liquid Crystal Phases 111
5.4.1 Nematic Liquid Crystals 111
5.4.2 Cholesteric Liquid Crystals 111
5.4.3 Smectic Liquid Crystals 112
5.5 Liquid Crystal Domains 112
5.6 Physical Properties 113
5.6.1 LC Temperature Range 114
5.6.2 Viscosity 115
5.6.3 Dielectric Constant 116
5.6.4 Refractive Index 118
5.7 Liquid Crystal Displays 119
5.7.1 Basic Components 119
5.7.2 Working Principle 120
Chapter 6 Organic Field-Effect Transistor Materials and Devices 122
6.1 Field-Effect Transistors 122
6.1.1 Basic Conceptions 122
6.1.2 p-n Junction Semiconductor Diode 124
6.1.3 Semiconductor Triode 125
6.2 Organic Field Effect Transistor 126
6.2.1 OFET Device Structure 126
6.2.2 OFET Working Principle 127
6.3 OFET Performances 128
6.3.1 Device Mobility 128
6.3.2 On/Off Ratio 129
6.3.3 Threshold Voltage 130
6.3.4 Saturation and Unsaturation Regions 130
6.4 OFET Materials 131
6.4.1 Organic Semiconductor Materials 131
6.4.2 Electrode Materials 134
6.4.3 Insulating Layer Materials 136
6.4.4 Substrate Materials 136
6.5 OFET Fabrication Processes 137
6.5.1 Silk-screen Printing 137
6.5.2 Inkjet Printing 138
Chapter 7 Organic Solar Energy Materials and Devices 140
7.1 Solar Spectrum and Solar Energy Utilization 140
7.1.1 Solar Spectrum 140
7.1.2 Solar Energy Utilization 141
7.2 Organic Solar Cell 141
7.2.1 Working Principle 142
7.2.2 Performance Parameters 142
7.2.3 OSC Structures 144
7.2.4 Organic Solar Active Materials 147
7.3 Dye Sensitized Solar Cell (DSSC) 149
7.3.1 Dye Sensitization Principle 149
7.3.2 DSSC Device Structure 150
7.3.3 DSSC Working Principle 151
7.3.4 DSSC Materials 152
7.3.5 Factors influencing DSSCs Performances 155
7.4 Conversion from Solar Energy to Chemical Energy 156
7.4.1 Photosynthesis 156
7.4.2 Conversion of Solar Energy to Hydrogen Energy 158
7.5 Conversion of Solar Energy to Heat 160
Chapter 8 Organic Photoconductors and Devices 162
8.1 Organic Photoconductor Principle 162
8.2 OPC Performance Parameters 163
8.3 OPC Materials 165
8.3.1 Phthalocyanine and Metalphthalocyanine 165
8.3.2 Polyvinylcarbazole 167
8.3.3 PVC Composites 168
8.3.4 Squaraine Dye 170
8.4 OPC Devices 171
8.4.1 OPC Device Composition 171
8.4.2 OPC Device Structure 171
8.4.3 OPC Device Working Principle 172
8.4.4 OPC Device Parameters 172
Chapter 9 Two-photon Absorption Materials and Applications 174
9.1 Two-photon Absorption 174
9.1.1 Nonlinear Optical Phenomena 174
9.1.2 Two-photon Absorption 175
9.2 Two-photon Absorption Applications 175
9.2.1 Optical Power Limiting 176
9.2.2 Two-photon Upconversion Lasing 178
9.2.3 Two-photon Data Storage 180
9.2.4 Two-photon Photodynamic Therapy 182
9.2.5 Two-photon Cofocal Laser Scanning Microscopy (CLSM) 183
9.3 Strong Two-photon Absorption Chromophores 184
9.3.1 Theoretical Molecular Designs 184
9.3.2 Asymmetric Molecular Structures 186
9.3.3 Symmetric Molecular Structures 189
References 192
Chapter 10 Triplet-triplet Annihilation Upconversion Materials and Applications 193
10.1 Triplet-triplet Annihilation Upconversion 193
10.1.1 Differences between TTA-UC and TPA-UC 194
10.1.2 TTA-UC Efficiency 195
10.2 Potential Applications of TTA-UC 198
10.2.1 Upconversion-powered Photoelectrochemistry 198
10.2.2 Upconversion-powered Solar Cell 200
10.2.3 TTA-UC-powered Photolysis of Bilirubin 202
10.3 Triplet-triplet Annihilation Upconversion Systems 203
10.3.1 Solution-based Upconversion Systems 203
10.3.2 Polymer-based Upconversion Systems 208
References 212