關(guān)于我們
書單推薦
新書推薦
|
雷達(dá)信號(hào)分析手冊(cè)(英文版) 讀者對(duì)象:本書可作為高等院校電子工程專業(yè)高年級(jí)本科生和碩士研究生的雙語教學(xué)教材,也可作為在雷達(dá)系統(tǒng)領(lǐng)域工作的雷達(dá)工程師和技術(shù)人員的參考書。
本書由9位專家合著而成。首先給入行新手回顧了信號(hào)與系統(tǒng)、雷達(dá)系統(tǒng)和雷達(dá)方程的基礎(chǔ)知識(shí),然后分章討論雷達(dá)傳播介質(zhì)、雷達(dá)電子戰(zhàn)、匹配濾波器接收機(jī)、雷達(dá)模糊函數(shù)、目標(biāo)檢測(cè)、雷達(dá)雜波信號(hào)處理、雷達(dá)跟蹤技術(shù)、RCS計(jì)算的經(jīng)典方法和有限差分時(shí)域方程方法,RCS計(jì)算的集成光學(xué)和物理光學(xué)方法,天線技術(shù)的雷達(dá)應(yīng)用,合成孔徑雷達(dá),寬帶雷達(dá)應(yīng)用,現(xiàn)代數(shù)字陣列天線的雷達(dá)應(yīng)用。
Bassem R. Mahafza是雷達(dá)學(xué)科世界范圍內(nèi)公認(rèn)的專家,具有30多年的研究經(jīng)驗(yàn),在雷達(dá)技術(shù)、雷達(dá)設(shè)計(jì)與分析(包括所有傳感器子部件)、雷達(dá)仿真和模型設(shè)計(jì)、雷達(dá)特征和雷達(dá)算法開發(fā)(特別是在先進(jìn)雜波抑制技術(shù)和對(duì)抗方面)等領(lǐng)域有豐富的成果。
Bassem R. Mahafza是雷達(dá)學(xué)科世界范圍內(nèi)公認(rèn)的專家,具有30多年的研究經(jīng)驗(yàn),在雷達(dá)技術(shù)、雷達(dá)設(shè)計(jì)與分析(包括所有傳感器子部件)、雷達(dá)仿真和模型設(shè)計(jì)、雷達(dá)特征和雷達(dá)算法開發(fā)(特別是在先進(jìn)雜波抑制技術(shù)和對(duì)抗方面)等領(lǐng)域有豐富的成果。
Chapter 1 Signals and Systems - Refresher
1.1 Signal Classification 1.2 Signal Expansion Functions 1.2.1 Fourier Series Expansion 1.2.2 Properties of the Fourier Series 1.3 Fourier Transform 1.3.1 Fourier Transform Pairs and Properties Tables 1.4 Systems Classification 1.4.1 Linear and Nonlinear Systems 1.4.2 Time Invariant and Time Varying Systems 1.4.3 Stable and Nonstable Systems 1.4.4 Causal and Noncausal Systems 1.5 Spectra of Common Radar Signals 1.5.1 Continuous Wave Signal 1.5.2 Finite Duration Pulse Signal 1.5.3 Periodic Pulse Signal 1.5.4 Finite Duration Pulse Train Signal 1.6 Convolution Integral 1.7 Correlation 1.7.1 Correlation Coefficient 1.7.2 Correlation Integral - Energy Signals 1.7.3 Relationship between Convolution and Correlation Integrals 1.7.4 Effect of Time Translation on the Correlation Function 1.7.5 Correlation Function Properties 1.7.6 Correlation Integral - Power Signals 1.7.7 Energy and Power Spectrum Densities 1.7.8 Correlation Function for Periodic Signals 1.8 Bandpass Signals 1.8.1 Analytic Signal (Pre-Envelope) 1.8.2 Pre-Envelope and Complex Envelope of Bandpass Signals 1.8.3 Spectrum for a Linear Frequency Modulation Signal 1.9 Discrete Time Systems and Signals 1.9.1 Sampling Theorem 1.10 Z-Transform 1.11 Discrete Fourier Transform 1.11.1 Discrete Power Spectrum 1.11.2 Spectral Leakage and Fold-Over 1.11.3 Windowing Techniques 1.11.4 Decimation and Interpolation 1.12 Random Variables and Random Processes 1.12.1 Random Variables 1.12.2 Multivariate Gaussian Random Vector 1.12.3 Complex Multivariate Gaussian Random Vector 1.12.4 Rayleigh Random Variables 1.12.5 The Chi-Square Random Variables 1.12.6 Random Processes 1.12.7 Gaussian Random Process 1.12.8 Lowpass Gaussian Random Processes 1.12.9 Bandpass Gaussian Random Processes 1.12.10 Envelope of a Bandpass Gaussian Process Chapter 2 Radar Systems Basics 2.1 Radar Block Diagram 2.2 Radar Specific Terms 2.2.1 Range 2.2.2 Unambiguous Range 2.2.3 Range Resolution 2.2.4 Doppler Frequency 2.3 Radar Systems Classifications and Bands 2.3.1 High Frequency and Very HF Radars (A- and B-Bands) 2.3.2 Ultra High Frequency Radars (C-Band) 2.3.3 L-Band Radars (D-Band) 2.3.4 S-Band Radars (E- and F-Bands) 2.3.5 C-Band Radar (G-Band) 2.3.6 X- and Ku-Band Radars (I- and J-Bands) 2.3.7 K- and Ka-Band Radars (J- and K-Bands) 2.3.8 Millimeter Wave Radars (V- and W-Bands) 2.4 Decibel Arithmetic 2.5 Electromagnetic Waves (RF Waves) 2.5.1 Polarization 2.6 Coherence 2.7 Radar Antenna 2.7.1 Antenna Directivity and Gain 2.7.2 Antenna Power Radiation Pattern 2.7.3 Near and Far Fields 2.7.4 Beam Shape Loss and Scan Loss 2.7.5 Number of Beam Positions 2.8 Radar Cross-Section 2.8.1 RCS Prediction Methods 2.9 Radar Measurement Errors Chapter 3 Radar Equation 3.1 Radar Range Equation 3.1.1 Maximum Detection Range 3.1.2 Blake Chart 3.1.3 Low Pulse Repetition Frequency Radar Equation 3.1.4 High PRF Radar Equation 3.1.5 Surveillance Radar Equation 3.2 Bistatic Radar Equation 3.3 Radar Losses 3.3.1 Transmit and Receive Losses 3.3.2 Antenna Pattern Loss and Scan Loss 3.3.3 Atmospheric Loss 3.3.4 Collapsing Loss 3.3.5 Processing Loss 3.4 Noise Figure 3.5 Continuous Wave Radars 3.5.1 CW Radar Equation 3.5.2 Frequency Modulation 3.5.3 Linear Frequency Modulated CW Radar 3.5.4 Multiple Frequency CW Radar Chapter 4 Radar Propagation Medium 4.1 Earth’s Impact on the Radar Equation 4.2 Earth’s Atmosphere 4.3 Atmospheric Models 4.3.1 Index of Refraction in the Troposphere 4.3.2 Index of Refraction in the Ionosphere 4.3.3 Mathematical Model for Computing Refraction 4.3.4 Stratified Atmospheric Refraction Model 4.4 Four-Third Earth Model 4.4.1 Target Height Equation 4.5 Ground Reflection 4.5.1 Smooth Surface Reflection Coefficient 4.5.2 Divergence 4.5.3 Rough Surface Reflection 4.5.4 Total Reflection Coefficient 4.6 Pattern Propagation Factor 4.6.1 Flat Earth 4.6.2 Spherical Earth 4.7 Diffraction Chapter 5 Radar Electronic Warfare Techniques 5.1 Electronic Warfare Classes 5.2 Passive Jamming Techniques 5.3 Radar Equation with Jamming 5.3.1 Self-Protection Jamming Radar Equation 5.3.2 Support Jamming Radar Equation 5.3.3 Range Reduction Factor 5.4 Noise (Denial) Jamming Techniques 5.4.1 Barrage Noise Jamming 5.4.2 Spot Noise and Sweep Spot Noise Jamming 5.5 Deceptive Jamming 5.6 Electronic Counter-Counter Measure Techniques 5.6.1 Receiver Protection Techniques 5.6.2 Jamming Avoidance and Exploitation Techniques 5.7 Case Studies 5.7.1 Hypothetical Victim-Radar Parameters 5.7.2 Self-Screening Jamming Case 5.7.3 Support Jamming Case Chapter 6 Matched Filter Receiver 6.1 Matched Filtering 6.1.1 Matched Filter Impulse Response 6.1.2 The Replica 6.1.3 Mean and Variance of the Matched Filter Output 6.2 General Formula for the Output of the Matched Filter 6.2.1 Stationary Target Case 6.2.2 Moving Target Case 6.3 Waveform Resolution 6.3.1 Range Resolution 6.3.2 Doppler Resolution 6.3.3 Combined Range and Doppler Resolution 6.4 Range and Doppler Uncertainty 6.4.1 Range Uncertainty 6.4.2 Doppler (Velocity) Uncertainty 6.5 Combined Range-Doppler Uncertainty 6.6 Target Parameter Estimation 6.6.1 What is an Estimator 6.6.2 Amplitude Estimation 6.6.3 Phase Estimation 6.7 Pulse Compression 6.7.1 Time-Bandwidth Product 6.7.2 Radar Equation with Pulse Compression 6.7.3 Basic Principle of Pulse Compression 6.7.4 Correlation Processor 6.7.5 Stretch Processor 6.7.6 Stepped Frequency Waveforms 6.7.7 Effect of Target Velocity on Pulse Compression Chapter 7 Radar Ambiguity Function 7.1 Ambiguity Function Definition 7.2 Effective Signal Bandwidth and Duration 7.3 Single Pulse Ambiguity Function 7.3.1 Time-Bandwidth Product 7.3.2 Ambiguity Function 7.4 LFM Ambiguity Function 7.4.1 Time-Bandwidth Product 7.4.2 Ambiguity Function 7.5 Coherent Pulse Train Ambiguity Function 7.5.1 Time-Bandwidth Product 7.5.2 Ambiguity Function 7.6 Pulse Train with LFM Ambiguity Function 7.7 Stepped Frequency Waveform Ambiguity Function 7.8 Nonlinear Frequency Modulation 7.8.1 Concept of Stationary Phase 7.8.2 Frequency Modulated Waveform Spectrum Shaping 7.9 Ambiguity Diagram Contours 7.9.1 Range-Doppler Coupling in LFM Signals - Revisited 7.10 Discrete Code Signal Representation 7.10.1 Pulse-Train Codes 7.11 Phase Coding 7.11.1 Binary Phase Codes 7.11.2 Polyphase Codes 7.12 Frequency Codes Chapter 8 Target Detection Part I - Single Pulse Detection 8.1 Single Pulse with Known Parameters 8.2 Single Pulse with Known Amplitude and Unknown Phase 8.2.1 Probability of False Alarm 8.2.2 Probability of Detection Part II - Detection of Fluctuating Targets 8.3 Pulse Integration 8.3.1 Coherent Integration 8.3.2 Noncoherent Integration 8.3.3 Improvement Factor and Integration Loss 8.3.4 Probability of False Alarm Formulation for a Square Law Detector 8.3.5 Square Law Detection 8.4 Probability of Detection Calculation 8.4.1 Detection of Swerling 0 (Swerling V) Targets 8.4.2 Detection of Swerling I Targets 8.4.3 Detection of Swerling II Targets 8.4.4 Detection of Swerling III Targets 8.4.5 Detection of Swerling IV Targets 8.5 Cumulative Probability of Detection 8.6 Constant False Alarm Rate 8.6.1 Cell-Averaging CFAR (Single Pulse) 8.6.2 Cell-Averaging CFAR with Noncoherent Integration 8.7 M-out-of-N Detection 8.8 Radar Equation Revisited 8.9 Gamma Function 8.9.1 Incomplete Gamma Function Chapter 9 Radar Signal Processing in Clutter 9.1 Introduction 9.2 Clutter Definition 9.3 Volume Clutter 9.3.1 Radar Range Equation in Volume Clutter 9.3.2 Volume Clutter Spectra 9.4 Area Clutter 9.4.1 Constant γ Model 9.4.2 Signal to Clutter, Airborne Radar 9.5 Clutter RCS, Ground-Based 9.5.1 Low PRF Case 9.5.2 High PRF Case 9.6 Amplitude Distribution 9.7 Area Clutter Spectrum 9.8 Doppler Processing 9.8.1 Range and Doppler Processing 9.8.2 Range and Doppler Ambiguity 9.8.3 Generalized Spectrum for Ground and Airborne Systems 9.9 Moving Target Indicator 9.9.1 Two Pulse Canceler 9.9.2 Three Pulse Canceler 9.9.3 The N+1 Pulse Canceler 9.9.4 Recursive MTI Filter 9.9.5 Blind Speeds and PRF Staggering 9.9.6 MTI Figures of Merit 9.10 Pulse Doppler Processing 9.10.1 Discrete Time Fourier Transform 9.10.2 Discrete Fourier Transform 9.10.3 Windowing 9.11 Ambiguity Resolution 9.11.1 Range Ambiguity Resolution 9.11.2 Doppler Ambiguity Resolution 9.11.3 Pulse Pair Processing 9.12 Limitations of Doppler Processing Appendix 9-A Fill Pulses in Pulse Doppler Radars Chapter 10 Radar Tracking 10.1 Introduction 10.2 Basic Concepts 10.2.1 Tracking Architecture 10.2.2 State Space Representation 10.3 Measurements 10.3.1 Angle Measurements 10.4 Filtering 10.4.1 Least Squares 10.4.2 Recursive Least Squares 10.4.3 Kalman Filter 10.4.4 Extended Kalman Filter 10.5 Derivation of Recursive Least Squares 10.6 Data Association 10.6.1 Gating 10.7 Tracking Maneuvering Targets 10.7.1 Field Parameter Filters 10.7.2 Dynamic Parameter Filters 10.7.3 Multiple Model Filters Chapter 11 Canonical and Finite Difference Time Domain Methods for RCS Computations 11.1 Radar Cross-Section Definition 11.2 RCS Dependency on Aspect Angle and Frequency 11.3 Target Scattering Matrix 11.4 Scattering off Basic Canonical Objects 11.4.1 Cylinder 11.4.2 Dielectric-Capped wedge 11.4.3 Spheres 11.4.4 Ellipsoids 11.5 RCS Approximations of Simple Objects 11.5.1 Finite Length Cylinder 11.5.2 Circular Flat Plate 11.5.3 Rectangular Flat Plate 11.5.4 Triangular Flat Plate 11.5.5 Truncated Cone (Frustum) 11.6 RCS Using Computational Electromagnetics 11.6.1 The Standard Finite Difference Time Domain Method 11.7 RCS Using the FDTD Method 11.7.1 RCS of a Sphere 11.7.2 RCS of Complex Objects Chapter 12 Integral and Physical Optics Methods for RCS Computation 12.1 Introduction 12.2 Radiation and Scattering 12.2.1 Maxwell’s Equations 12.2.2 Boundary Conditions 12.2.3 Formulations for Radiation 12.2.4 Near and Far Fields 12.2.5 Formulations for Scattering 12.3 Numerical Methods 12.3.1 Method of Moments 12.3.2 Physical Optics 12.3.3 Physical Theory of Diffraction 12.3.4 Shooting and Bouncing Rays 12.3.5 Scattering Centers 12.4 RCS Data Products 12.5 Scattering Coordinate System 12.5.1 Target Geometry Coordinate System 12.5.2 Spherical Coordinates 12.5.3 Aspect and Roll Coordinates 12.5.4 Measurement Coordinate System 12.6 Examples 12.6.1 Bodies of Revolution 12.6.2 Complex Three-Dimensional Objects Chapter 13 Antennas for Radar Applications 13.1 Antenna Types 13.2 Antenna Basic Parameters 13.2.1 Radiation Pattern 13.2.2 Antenna Radiated Power 13.2.3 Radiation Intensity 13.2.4 Directivity 13.2.5 Antenna Gain 13.2.6 Antenna Effective Aperture 13.3 General Antenna Arrays 13.4 Linear Arrays 13.5 Array Tapering 13.6 Planar Arrays 13.6.1 Rectangular Grid Arrays 13.6.2 Circular Grid Arrays 13.6.3 Concentric Grid Circular Arrays 13.6.4 Recursive Circular 2-D Arrays 13.6.5 Rectangular Grid with Circular Boundary Arrays 13.7 Three- Dimensional Arrays 13.7.1 Rectangular Parallelepiped 3-D Array 13.7.2 Spherical 3-D Arrays 13.7.3 Arbitrary Arrays 13.8 Array Feeding and Beamforming Networks 13.8.1 General Forms of Array Feeding Networks 13.8.2 Wideband Operation of Feeding Networks 13.8.3 Array Beamforming Networks 13.8.4 Power-Divider Beamforming Networks 13.8.5 Butler and Blass Matrix 13.8.6 Rotman Lens 13.8.7 Design Considerations for Beamforming Networks 13.8.8 Feeding and Beamforming Networks for Two-Dimensional Arrays Chapter 14 Synthetic Aperture Radar 14.1 Basic Strip-Map Synthetic Aperture Radar Concept 14.1.1 Down Range Resolution 14.1.2 Cross-Range Resolution 14.1.3 Pulse Repetition Frequency Consideration 14.2 SAR Image Formation 14.2.1 Image Formation Processing Steps 14.2.2 Motion Compensation 14.2.3 Image Formation 14.2.4 Auto-Focus Techniques 14.3 Image Quality Considerations 14.4 Spotlight SAR 14.4.1 Motion through Resolution Cells 14.4.2 Polar Format Algorithm 14.4.3 Interferometric Synthetic Aperture Radar 14.5 Inverse Synthetic Aperture Radar Chapter 15 Wideband Radar Applications 15.1 Introduction 15.2 Band Versus Bandwidth 15.2.1 Various Bandwidths 15.2.2 Narrow Band, Medium Band and Wideband 15.3 Wideband Radar Applications 15.3.1 Foliage Penetrating Synthetic Array Radar 15.3.2 Automotive Blind Spot Warning and Collision Avoidance 15.3.3 Space Object Identification 15.3.4 Ground Perimeter Surveillance 15.3.5 Pavement Profiling and Inspection 15.3.6 Wall-Penetrating Radar for Detecting People 15.3.7 Noninvasive Construction Scanning 15.3.8 Industrial Robot Control 15.3.9 Compact Radar Range 15.3.10 Airport Security Imaging and Detection 15.3.11 Application Conclusions Chapter 16 Modern Digital Array Antennas for Radar Applications 16.1 Introduction 16.2 Introduction to Digital Arrays 16.3 Comparison of Array Antenna Architectures by Example 16.4 Other Digital Array Advantages 16.5 Extreme Data Rate Demands in Digital Arrays 16.6 Digital Down-Conversion and Digital Up-Conversion 16.7 Array Factor versus Huygens-Fresnel Principle 16.8 Simultaneous Receive Beams 16.9 Array Scanning Effects to Antenna Pattern 16.10 Noise Figure and Third Order Intercept in AESA 16.11 Concluding Remarks Index
你還可能感興趣
我要評(píng)論
|