關(guān)于我們
書單推薦
新書推薦
|
模式識別 讀者對象:高年級本科生和研究生
介紹模式識別中的基礎(chǔ)知識、主要模型及熱門應(yīng)用,使學(xué)生掌握模式識別的基本原理、實(shí)際應(yīng)用以及*新研究進(jìn)展,培養(yǎng)學(xué)生在本學(xué)科中的視野與獨(dú)立解決任務(wù)的能力,為學(xué)生在模式識別的項(xiàng)目開發(fā)及相關(guān)科研活動打好基礎(chǔ)。
前言
符號表 第一部分概述.........................................................................1 第1章緒論.............................................................................2 1.1樣例:自動駕駛..................................................................3 1.2模式識別與機(jī)器學(xué)習(xí).............................................................5 1.2.1一個典型的模式識別流程.....................................................5 1.2.2模式識別vs.機(jī)器學(xué)習(xí).......................................................8 1.2.3評估、部署和細(xì)化...........................................................9 1.3本書的結(jié)構(gòu)......................................................................9 習(xí)題.................................................................................12 第2章數(shù)學(xué)背景知識..................................................................14 2.1線性代數(shù).......................................................................14 2.1.1內(nèi)積、范數(shù)、距離和正交性..................................................14 2.1.2角度與不等式..............................................................15 2.1.3向量投影..................................................................16 2.1.4矩陣基礎(chǔ)..................................................................17 2.1.5矩陣乘法..................................................................18 2.1.6方陣的行列式與逆..........................................................19 2.1.7方陣的特征值、特征向量、秩和跡............................................20 2.1.8奇異值分解................................................................22 2.1.9(半)正定實(shí)對稱矩陣.......................................................22 2.2概率............................................................................23 2.2.1基礎(chǔ)......................................................................23 2.2.2聯(lián)合分布、條件分布與貝葉斯定理............................................25 2.2.3期望與方差/協(xié)方差矩陣.....................................................26 2.2.4不等式....................................................................27 2.2.5獨(dú)立性與相關(guān)性............................................................28 2.2.6正態(tài)分布..................................................................29 2.3優(yōu)化與矩陣微積分..............................................................30 2.3.1局部極小、必要條件和矩陣微積分............................................30 2.3.2凸優(yōu)化與凹優(yōu)化............................................................31 2.3.3約束優(yōu)化和拉格朗日乘子法.................................................33 2.4算法復(fù)雜度.....................................................................34 2.5閱讀材料.......................................................................35 習(xí)題.................................................................................35 第3章模式識別系統(tǒng)概述.............................................................39 3.1人臉識別.......................................................................39 3.2一個簡單的最近鄰分類器.......................................................40 3.2.1訓(xùn)練或?qū)W習(xí)................................................................40 3.2.2測試或預(yù)測................................................................40 3.2.3最近鄰分類器..............................................................41 3.2.4k-近鄰....................................................................42 3.3丑陋的細(xì)節(jié).....................................................................43 3.4制定假設(shè)并化簡................................................................46 3.4.1設(shè)計(jì)工作環(huán)境vs.設(shè)計(jì)復(fù)雜算法.............................................46 3.4.2假設(shè)與簡化................................................................47 3.5一種框架.......................................................................51 3.6閱讀材料.......................................................................51 習(xí)題.................................................................................53 第4章評估............................................................................55 4.1簡單情形中的準(zhǔn)確率和錯誤率..................................................55 4.1.1訓(xùn)練與測試誤差............................................................56 4.1.2過擬合與欠擬合............................................................56 4.1.3使用驗(yàn)證集來選擇超參數(shù)...................................................58 4.1.4交叉驗(yàn)證..................................................................59 4.2最小化代價/損失...............................................................61 4.2.1正則化....................................................................62 4.2.2代價矩陣..................................................................62 4.2.3貝葉斯決策理論............................................................63 4.3不平衡問題中的評估............................................................64 4.3.1單個類別內(nèi)的比率..........................................................64 4.3.2ROC曲線下的面積.........................................................65 4.3.3查準(zhǔn)率、查全率和F值.....................................................66 4.4我們能達(dá)到100%的準(zhǔn)確率嗎?..................................................68 4.4.1貝葉斯錯誤率..............................................................68 4.4.2真實(shí)標(biāo)記..................................................................69 4.4.3偏置-方差分解.............................................................70 4.5對評估結(jié)果的信心..............................................................73 4.5.1為什么要取平均?...........................................................73 4.5.2為什么要報(bào)告樣本標(biāo)準(zhǔn)差?..................................................74 4.5.3比較兩個分類器............................................................75 4.6閱讀材料.......................................................................79 習(xí)題.................................................................................79 第二部分與領(lǐng)域知識無關(guān)的特征提取.............................................83 第5章主成分分析.....................................................................84 5.1動機(jī)............................................................................84 5.1.1維度與內(nèi)在維度............................................................84 5.1.2降維......................................................................86 5.1.3PCA與子空間方法.........................................................86 5.2PCA降維到零維子空間........................................................86 5.2.1想法-形式化-優(yōu)化實(shí)踐......................................................87 5.2.2一個簡單的優(yōu)化............................................................87 5.2.3一些注釋..................................................................88 5.3PCA降維到一維子空間........................................................88 5.3.1新的形式化................................................................88 5.3.2最優(yōu)性條件與化簡..........................................................89 5.3.3與特征分解的聯(lián)系..........................................................90 5.3.4解........................................................................91 5.4PCA投影到更多維度...........................................................91 5.5完整的PCA算法...............................................................92 5.6方差的分析.....................................................................93 5.6.1從最大化方差出發(fā)的PCA..................................................94 5.6.2一種更簡單的推導(dǎo)..........................................................95 5.6.3我們需要多少維度呢?.......................................................95 5.7什么時候使用或不用PCA呢?..................................................96 5.7.1高斯數(shù)據(jù)的PCA..........................................................96 5.7.2非高斯數(shù)據(jù)的PCA........................................................96 5.7.3含異常點(diǎn)數(shù)據(jù)的PCA......................................................98 5.8白化變換.......................................................................98 5.9特征分解vs.SVD..............................................................98 5.10閱讀材料......................................................................99 習(xí)題.................................................................................99 第6章Fisher線性判別..............................................................103 6.1用于二分類的FLD...........................................................104 6.1.1想法:什么是隔得很遠(yuǎn)呢?..................................................104 6.1.2翻譯成數(shù)學(xué)語言...........................................................105 6.1.3散度矩陣vs.協(xié)方差矩陣..................................................107 6.1.4兩種散度矩陣以及FLD的目標(biāo)函數(shù)........................................108 6.1.5優(yōu)化.....................................................................108 6.1.6等等,我們有一條捷徑.....................................................109 6.1.7二分類問題的FLD.......................................................109 6.1.8陷阱:要是SW不可逆呢?..................................................110 6.2用于多類的FLD..............................................................111 6.2.1稍加修改的符號和SW....................................................111 6.2.2SB的候選................................................................111 6.2.3三個散度矩陣的故事.......................................................112 6.2.4解.......................................................................113 6.2.5找到更多投影方向.........................................................113 6.3閱讀材料......................................................................113 習(xí)題................................................................................114 第三部分分類器與其他工具.......................................................119 第7章支持向量機(jī)...................................................................120 7.1SVM的關(guān)鍵思想..............................................................120 7.1.1簡化它!簡化它!簡化它!..................................................120 7.1.2查找最大(或較大)間隔的分類器...........................................121 7.2可視化并計(jì)算間隔.............................................................122 7.2.1幾何的可視化.............................................................123 7.2.2將間隔作為優(yōu)化來計(jì)算....................................................124 7.3最大化間隔....................................................................124 7.3.1形式化...................................................................125 7.3.2各種簡化.................................................................125 7.4優(yōu)化與求解....................................................................127 7.4.1拉格朗日函數(shù)與KKT條件................................................127 7.4.2SVM的對偶形式..........................................................128 7.4.3最優(yōu)的b值與支持向量....................................................129 7.4.4同時考慮原始形式與對偶形式..............................................131 7.5向線性不可分問題和多類問題的擴(kuò)展..........................................131 7.5.1不可分問題的線性分類器..................................................132 7.5.2多類SVM...............................................................134 7.6核SVM.......................................................................134 7.6.1核技巧...................................................................135 7.6.2Mercer條件與特征映射....................................................136 7.6.3流行的核函數(shù)與超參數(shù)....................................................137 7.6.4SVM的復(fù)雜度、權(quán)衡及其他...............................................138 7.7閱讀材料......................................................................139 習(xí)題................................................................................139 第8章概率方法......................................................................144 8.1思考問題的概率路線..........................................................144 8.1.1術(shù)語.....................................................................144 8.1.2分布與推斷...............................................................145 8.1.3貝葉斯定理...............................................................145 8.2各種選擇......................................................................146 8.2.1生成式模型vs.判別式模型................................................146 8.2.2參數(shù)化vs.非參數(shù)化.......................................................147 8.2.3該如何看待一個參數(shù)呢?...................................................148 8.3參數(shù)化估計(jì)....................................................................148 8.3.1最大似然.................................................................148 8.3.2最大后驗(yàn).................................................................150 8.3.3貝葉斯...................................................................151 8.4非參數(shù)化估計(jì)..................................................................153 8.4.1一個一維的例子...........................................................153 8.4.2直方圖近似中存在的問題..................................................155 8.4.3讓你的樣本無遠(yuǎn)弗屆.......................................................156 8.4.4核密度估計(jì)...............................................................157 8.4.5帶寬選擇.................................................................158 8.4.6多變量KDE.............................................................158 8.5做出決策......................................................................159 8.6閱讀材料......................................................................159 習(xí)題................................................................................160 第9章距離度量與數(shù)據(jù)變換..........................................................163 9.1距離度量和相似度度量........................................................163 9.1.1距離度量.................................................................164 9.1.2向量范數(shù)和度量...........................................................164 9.1.3`p范數(shù)和`p度量.........................................................165 9.1.4距離度量學(xué)習(xí).............................................................167 9.1.5均值作為一種相似度度量..................................................168 9.1.6冪平均核.................................................................170 9.2數(shù)據(jù)變換和規(guī)范化.............................................................171 9.2.1線性回歸.................................................................172 9.2.2特征規(guī)范化...............................................................173 9.2.3數(shù)據(jù)變換.................................................................175 9.3閱讀材料......................................................................177 習(xí)題................................................................................177 第10章信息論和決策樹.............................................................182 10.1前綴碼和霍夫曼樹............................................................182 10.2信息論基礎(chǔ)...................................................................183 10.2.1熵和不確定性...........................................................184 10.2.2聯(lián)合和條件熵...........................................................184 10.2.3互信息和相對熵.........................................................185 10.2.4一些不等式.............................................................186 10.2.5離散分布的熵...........................................................187 10.3連續(xù)分布的信息論............................................................187 10.3.1微分熵.................................................................188 10.3.2多元高斯分布的熵......................................................189 10.3.3高斯分布是最大熵分布..................................................191 10.4機(jī)器學(xué)習(xí)和模式識別中的信息論.............................................192 10.4.1最大熵.................................................................192 10.4.2最小交叉熵.............................................................193 10.4.3特征選擇...............................................................194 10.5決策樹........................................................................195 10.5.1異或問題及其決策樹模型................................................195 10.5.2基于信息增益的結(jié)點(diǎn)劃分................................................197 10.6閱讀材料.....................................................................198 習(xí)題................................................................................199 第四部分處理變化多端的數(shù)據(jù)....................................................203 第11章稀疏數(shù)據(jù)和未對齊數(shù)據(jù)......................................................204 11.1稀疏機(jī)器學(xué)習(xí)................................................................204 11.1.1稀疏PCA?............................................................204 11.1.2使用`1范數(shù)誘導(dǎo)稀疏性.................................................205 11.1.3使用過完備的字典......................................................208 11.1.4其他一些相關(guān)的話題....................................................210 11.2動態(tài)時間規(guī)整................................................................212 11.2.1未對齊的時序數(shù)據(jù)......................................................212 11.2.2思路(或準(zhǔn)則).........................................................213 11.2.3可視化和形式化.........................................................214 11.2.4動態(tài)規(guī)劃...............................................................215 11.3閱讀材料.....................................................................218 習(xí)題................................................................................218 第12章隱馬爾可夫模型.............................................................222 12.1時序數(shù)據(jù)與馬爾可夫性質(zhì).....................................................222 12.1.1各種各樣的時序數(shù)據(jù)和模型..............................................222 12.1.2馬爾可夫性質(zhì)...........................................................224 12.1.3離散時間馬爾可夫鏈....................................................225 12.1.4隱馬爾可夫模型.........................................................227 12.2HMM學(xué)習(xí)中的三個基本問題................................................228 12.3?、ˉ和評估問題.............................................................229 12.3.1前向變量和算法.........................................................230 12.3.2后向變量和算法.........................................................231 12.4°、±、?和解碼問題..........................................................234 12.4.1°和獨(dú)立解碼的最優(yōu)狀態(tài)................................................234 12.4.2±、?和聯(lián)合解碼的最優(yōu)狀態(tài).............................................235 12.5?和HMM參數(shù)的學(xué)習(xí).......................................................237 12.5.1Baum-Welch:以期望比例來更新?.......................................238 12.5.2如何計(jì)算?.............................................................238 12.6閱讀材料.....................................................................240 習(xí)題................................................................................241 第五部分高階課題.................................................................245 第13章正態(tài)分布.....................................................................246 13.1定義..........................................................................246 13.1.1單變量正態(tài)分布.........................................................246 13.1.2多元正態(tài)分布...........................................................247 13.2符號和參數(shù)化形式............................................................248 13.3線性運(yùn)算與求和..............................................................249 13.3.1單變量的情形...........................................................249 13.3.2多變量的情形...........................................................250 13.4幾何和馬氏距離..............................................................251 13.5條件作用.....................................................................252 13.6高斯分布的乘積..............................................................253 13.7應(yīng)用Ⅰ:參數(shù)估計(jì)............................................................254 13.7.1最大似然估計(jì)...........................................................254 13.7.2貝葉斯參數(shù)估計(jì).........................................................255 13.8應(yīng)用Ⅱ:卡爾曼濾波..........................................................256 13.8.1模型...................................................................256 13.8.2估計(jì)...................................................................257 13.9在本章中有用的數(shù)學(xué).........................................................258 13.9.1高斯積分...............................................................258 13.9.2特征函數(shù)...............................................................259 13.9.3舒爾補(bǔ)&矩陣求逆引理.................................................260 13.9.4向量和矩陣導(dǎo)數(shù).........................................................262 習(xí)題................................................................................263 第14章EM算法的基本思想........................................................266 14.1GMM:一個工作實(shí)例.........................................................266 14.1.1高斯混合模型...........................................................266 14.1.2基于隱變量的詮釋......................................................267 14.1.3假若我們能觀測到隱變量,那會怎樣?......................................268 14.1.4我們可以模仿先知嗎?...................................................269 14.2EM算法的非正式描述.......................................................270 14.3期望最大化算法..............................................................270 14.3.1聯(lián)合非凹的不完整數(shù)據(jù)對數(shù)似然..........................................271 14.3.2(可能是)凹的完整數(shù)據(jù)對數(shù)似然..........................................271 14.3.3通用EM的推導(dǎo)........................................................272 14.3.4E步和M步...........................................................274 14.3.5EM算法...............................................................275 14.3.6EM能收斂嗎?..........................................................275 14.4EM用于GMM..............................................................276 14.5閱讀材料.....................................................................279 習(xí)題................................................................................279 第15章卷積神經(jīng)網(wǎng)絡(luò)................................................................281 15.1預(yù)備知識.....................................................................281 15.1.1張量和向量化...........................................................282 15.1.2向量微積分和鏈?zhǔn)椒▌t..................................................283 15.2CNN概覽....................................................................283 15.2.1結(jié)構(gòu)...................................................................283 15.2.2前向運(yùn)行...............................................................285 15.2.3隨機(jī)梯度下降...........................................................285 15.2.4誤差反向傳播...........................................................286 15.3層的輸入、輸出和符號.......................................................287 15.4ReLU層......................................................................288 15.5卷積層........................................................................290 15.5.1什么是卷積?............................................................290 15.5.2為什么要進(jìn)行卷積?.....................................................291 15.5.3卷積作為矩陣乘法......................................................293 15.5.4克羅內(nèi)克積.............................................................295 15.5.5反向傳播:更新參數(shù).....................................................296 15.5.6更高維的指示矩陣......................................................297 15.5.7反向傳播:為前一層準(zhǔn)備監(jiān)督信號.........................................298 15.5.8用卷積層實(shí)現(xiàn)全連接層..................................................300 15.6匯合層........................................................................301 15.7案例分析:VGG-16網(wǎng)絡(luò)......................................................303 15.7.1VGG-Verydeep-16......................................................303 15.7.2感受野.................................................................304 15.8CNN的親身體驗(yàn).............................................................305 15.9閱讀材料.....................................................................305 習(xí)題................................................................................305 參考文獻(xiàn)................................................................................309 英文索引................................................................................325 中文索引................................................................................332
你還可能感興趣
我要評論
|