Hofp代數(shù)概念首次是被引進(jìn)到代數(shù)拓?fù)淅碚,而近些年將其發(fā)展并應(yīng)用于數(shù)學(xué)的其他領(lǐng)域,比如李群,代數(shù)群以及Galois理論。本書修訂并譯自日語,是學(xué)習(xí)Hopf代數(shù)基本理論的入門書籍。在介紹和討論了上代數(shù)、雙代數(shù)以及Hofp代數(shù)以后,接著講述Hopf代數(shù)積分的獨(dú)特性和存在性的Sullivan證明以及雙;窘Y(jié)構(gòu)理論。Hopf代數(shù)和群之間的對偶性引入仿射K-群的定義,通過Hopf代數(shù)理論的應(yīng)用討論了因子群的結(jié)構(gòu),可分解群的結(jié)構(gòu)和完全可約群。最后,簡單介紹了不可分域的Galois理論。目次:模型與代數(shù);Hopf代數(shù);Hopf代數(shù)與群表示論;代數(shù)群中的應(yīng)用;域論中的應(yīng)用。
讀者對象:本書適用于代數(shù)領(lǐng)域的研究生以及科研人員。
Preface
Notation
1 Modules and algebras
1.Modules
2.Algebras over a commutative ring
3.Lie algebras
4.Semi-simple algebras
5.Finitely generated commutative algebras
2 Hopf algebras
1.Bialgcbras and Hopf algebras
2.The representative bialgebras of semigroups
3.The duality between algebras and coalgebras
4.Irreducible bialgebras
5.Irreducible cocommutative biaIgebras
3 Hopr algebras and relnmmamtlom of group
1.Comodules and bimodules
2.Bimodules and biaIgebms
3.Integrals for Hopf algebras
4.The duality theorem
4 ApplimlJons to algebraic groups
1.Affme k-varieties
2.Atone k-groups
3.Lie algebras of affme algebraic k-groups
4.Factor groups
5.Unipotent groups and solvable groups
6.Completely reducible groups
5 Applications to field theory
1.K/k—bialgebras
2.Jacobson's theorem
3.Modular extensions
Appendix:Categories and functors
A.1 Categories
A.2 Functors
A.3 Adjoint functors
A.4 Representable functors
A.5 φ-groups andφ-cogroups
References
Index