深度學(xué)習(xí):主流框架和編程實(shí)戰(zhàn)
定 價(jià):59 元
叢書名:智能系統(tǒng)與技術(shù)叢書
- 作者:趙涓涓 強(qiáng)彥
- 出版時(shí)間:2018/5/1
- ISBN:9787111592396
- 出 版 社:機(jī)械工業(yè)出版社
- 中圖法分類:TP273
- 頁碼:220
- 紙張:膠版紙
- 版次:1
- 開本:16開
本書是利用實(shí)例來講解深度學(xué)習(xí)框架以及深度學(xué)習(xí)方法的綜合性著作,介紹了四大深度學(xué)習(xí)框架(TensorFlow、Caffe、Torch和MXNet),還詳細(xì)介紹了調(diào)參、二次接口的編程、遷移學(xué)習(xí)的模型等內(nèi)容。
PREFACE前 言自20世紀(jì)80年代以來,機(jī)器學(xué)習(xí)已經(jīng)在算法、理論和應(yīng)用等方面取得了巨大成功,廣泛應(yīng)用于產(chǎn)業(yè)界與學(xué)術(shù)界。簡單來說,機(jī)器學(xué)習(xí)就是通過算法使得機(jī)器能從大量歷史數(shù)據(jù)中學(xué)習(xí)規(guī)律,從而對(duì)新的樣本完成智能識(shí)別或?qū)ξ磥碜鲱A(yù)測(cè)。深度學(xué)習(xí)是一種機(jī)器學(xué)習(xí)方法,在一些最新的研究領(lǐng)域和新的應(yīng)用背景下,可用數(shù)據(jù)量的激增、計(jì)算能力的增強(qiáng)以及計(jì)算成本的降低為深度學(xué)習(xí)的快速發(fā)展鋪平了道路,同時(shí)也為深度學(xué)習(xí)在各大領(lǐng)域的應(yīng)用提供了支撐。自AlphaGo被提出并成功擊敗職業(yè)圍棋手后,“深度學(xué)習(xí)”這一概念快速進(jìn)入人們的視野并在業(yè)界引起了轟動(dòng),其因強(qiáng)大的特征提取能力以及靈活性在國內(nèi)外各大企業(yè)中掀起一陣狂潮,在語音識(shí)別、圖像識(shí)別和圖像處理領(lǐng)域取得的成果尤為突出。
本書是以實(shí)踐案例為主的深度學(xué)習(xí)框架結(jié)合編程實(shí)戰(zhàn)的綜合性著作,將帶領(lǐng)讀者逐步掌握深度學(xué)習(xí)需要的數(shù)據(jù)處理、調(diào)整參數(shù)、運(yùn)行實(shí)例和二次編碼,不僅幫助讀者理解理論知識(shí),而且能夠使讀者熟練掌握各種深度學(xué)習(xí)框架下的編程控制。本書配有大量的實(shí)踐案例,既便于課堂教學(xué),又便于學(xué)生自學(xué)。此外本書還配有同步PPT課件和程序源碼,可供教師進(jìn)行實(shí)驗(yàn)課程輔導(dǎo)。
本書介紹了四種深度學(xué)習(xí)框架(TensorFlow、Caffe、Torch、MXNet)的運(yùn)行原理,配合實(shí)例介紹了框架的詳細(xì)安裝、程序設(shè)計(jì)、調(diào)參和二次接口的詳細(xì)編程過程,引領(lǐng)讀者完整搭建深度學(xué)習(xí)框架,相信本書能夠從實(shí)戰(zhàn)的角度幫助讀者快速掌握和提高深度學(xué)習(xí)編程的技能。
全書內(nèi)容可分為緒論、四大框架、遷移學(xué)習(xí)和并行計(jì)算/交叉驗(yàn)證四大部分,共7章。
第1章討論深度學(xué)習(xí)與機(jī)器學(xué)習(xí)的關(guān)系、深度學(xué)習(xí)與統(tǒng)計(jì)學(xué)的關(guān)系、深度學(xué)習(xí)框架、深度學(xué)習(xí)中涉及的優(yōu)化方法以及對(duì)深度學(xué)習(xí)的展望五個(gè)方面的內(nèi)容,從理論上對(duì)深度學(xué)習(xí)進(jìn)行全面深刻的剖析,旨在為后續(xù)學(xué)習(xí)提供理論鋪墊與指導(dǎo)。
第2章對(duì)TensorFlow深度學(xué)習(xí)框架進(jìn)行詳細(xì)介紹,主要包括TensorFlow運(yùn)作原理、模型構(gòu)建、框架安裝,并進(jìn)一步介紹了TensorFlow框架下具體網(wǎng)絡(luò)的圖像分類編程實(shí)現(xiàn)以及詳細(xì)代碼的解讀。
第3章從理論與實(shí)戰(zhàn)兩方面對(duì)Caffe深度學(xué)習(xí)框架的發(fā)展、結(jié)構(gòu)以及具體的搭建過程進(jìn)行詳細(xì)介紹,并在Caffe深度學(xué)習(xí)框架下構(gòu)建全卷積神經(jīng)網(wǎng)絡(luò)(Fully Convolutional Network,F(xiàn)CN),用該網(wǎng)絡(luò)進(jìn)行圖像語義分割的實(shí)戰(zhàn)編程,對(duì)該案例程序代碼進(jìn)行詳細(xì)解讀。
第4章介紹Torch深度學(xué)習(xí)框架的基礎(chǔ)知識(shí),同時(shí)介紹Torch深度學(xué)習(xí)框架中使用的Lua語言;按照Torch框架的安裝過程,以一個(gè)具體的目標(biāo)檢測(cè)實(shí)例為出發(fā)點(diǎn),詳細(xì)介紹Torch的類和包的用法以及構(gòu)建神經(jīng)網(wǎng)絡(luò)的全過程,最后介紹Faster R-CNN的方法和實(shí)例。
第5章對(duì)MXNet框架進(jìn)行詳細(xì)介紹,包括MXNet的基本概念和特點(diǎn)、MXNet的安裝過程等,利用自然語言處理的實(shí)例來進(jìn)一步展示MXNet在深度學(xué)習(xí)方面的應(yīng)用實(shí)戰(zhàn)。
第6章介紹遷移學(xué)習(xí)發(fā)展、遷移學(xué)習(xí)的類型與模型,并以實(shí)際案例對(duì)遷移學(xué)習(xí)的過程進(jìn)行詳細(xì)介紹與分析。
第7章在深度學(xué)習(xí)的背景下分別對(duì)并行計(jì)算和交叉驗(yàn)證這兩種方法進(jìn)行詳細(xì)介紹。
本書既可作為大學(xué)本科、研究生相關(guān)專業(yè)教材,也適用于各種人工智能、機(jī)器學(xué)習(xí)的培訓(xùn)與認(rèn)證體系,同時(shí)可供廣大深度學(xué)習(xí)開發(fā)人員參考。
本書由多人合作完成,其中,第1章由太原理工大學(xué)強(qiáng)彥編寫,第2章由太原理工大學(xué)趙涓涓編寫,第3章由太原理工大學(xué)王華編寫,第4章由太原理工大學(xué)肖小嬌編寫,第5章由晉中學(xué)院董云云編寫,第6章由太原理工大學(xué)馬瑞青編寫,第7章由大同大學(xué)傅文博編寫,全書由強(qiáng)彥審閱。
本書在撰寫過程中得到了趙鵬飛、羅嘉瀅、肖寧、高慧明、吳保榮等項(xiàng)目組成員和業(yè)內(nèi)專家的大力支持和協(xié)助,在此一并表示衷心的感謝!
由于作者水平有限,不當(dāng)之處在所難免,懇請(qǐng)讀者及同仁賜教指正。
CONTENTS
目 錄
前言
第1章 緒論 1
1.1 機(jī)器學(xué)習(xí)與深度學(xué)習(xí) 1
1.1.1 機(jī)器學(xué)習(xí)與深度學(xué)習(xí)的關(guān)系 2
1.1.2 傳統(tǒng)機(jī)器學(xué)習(xí)與深度學(xué)習(xí)的對(duì)比 3
1.2 統(tǒng)計(jì)學(xué)與深度學(xué)習(xí) 5
1.2.1 統(tǒng)計(jì)學(xué)與深度學(xué)習(xí)的關(guān)系 5
1.2.2 基于統(tǒng)計(jì)的深度學(xué)習(xí)技術(shù) 6
1.3 本書涉及的深度學(xué)習(xí)框架 8
1.4 優(yōu)化深度學(xué)習(xí)的方法 8
1.5 深度學(xué)習(xí)展望 9
第2章 TensorFlow深度學(xué)習(xí)框架構(gòu)建方法與圖像分類的實(shí)現(xiàn) 12
2.1 TensorFlow概述 12
2.1.1 TensorFlow的特點(diǎn) 13
2.1.2 TensorFlow中的模型 14
2.2 TensorFlow框架安裝 16
2.2.1 基于Anaconda的安裝 16
2.2.2 測(cè)試TensorFlow 19
2.3 基于TensorFlow框架的圖像分類實(shí)現(xiàn)(ResNet-34) 20
2.3.1 應(yīng)用背景 20
2.3.2 ResNet 21
2.3.3 ResNet程序?qū)崿F(xiàn) 24
2.3.4 詳細(xì)代碼解析 27
2.3.5 實(shí)驗(yàn)結(jié)果及分析 51
第3章 Caffe深度學(xué)習(xí)框架搭建與圖像語義分割的實(shí)現(xiàn) 56
3.1 Caffe概述 56
3.1.1 Caffe的特點(diǎn) 56
3.1.2 Caffe框架結(jié)構(gòu) 57
3.2 Caffe框架安裝與調(diào)試 59
3.3 基于Caffe框架的圖像分割實(shí)現(xiàn)(FCN) 64
3.3.1 用Caffe構(gòu)建卷積神經(jīng)網(wǎng)絡(luò) 64
3.3.2 FCN-8s網(wǎng)絡(luò)簡介 69
3.3.3 詳細(xì)代碼解讀 85
3.3.4 實(shí)驗(yàn)結(jié)果與結(jié)論 98
第4章 Torch深度學(xué)習(xí)框架搭建與目標(biāo)檢測(cè)的實(shí)現(xiàn) 100
4.1 Torch概述 100
4.1.1 Torch的特點(diǎn) 100
4.1.2 Lua語言 102
4.2 Torch框架安裝 104
4.3 基于Torch框架的目標(biāo)檢測(cè)實(shí)現(xiàn)(Faster R-CNN) 113
4.3.1 Torch的類和包的基本用法 113
4.3.2 用Torch構(gòu)建神經(jīng)網(wǎng)絡(luò) 116
4.3.3 Faster R-CNN介紹 119
4.3.4 Faster R-CNN實(shí)例 127
4.3.5 實(shí)驗(yàn)結(jié)果分析 161
第5章 MXNet深度學(xué)習(xí)框架構(gòu)建與自然語言處理的實(shí)現(xiàn) 164
5.1 MXNet概述 164
5.1.1 MXNet基礎(chǔ)知識(shí) 164
5.1.2 編程接口 166
5.1.3 系統(tǒng)實(shí)現(xiàn) 169
5.1.4 MXNet的關(guān)鍵特性 171
5.2 MXNet框架安裝 172
5.3 基于MXNet框架的自然語言處理實(shí)現(xiàn)(LSTM) 179
5.3.1 自然語言處理應(yīng)用背景 179
5.3.2 RNN及LSTM網(wǎng)絡(luò) 180
5.3.3 Bucketing及不同長度的序列訓(xùn)練 183
5.3.4 詳細(xì)代碼實(shí)現(xiàn) 185
5.3.5 實(shí)驗(yàn)過程及實(shí)驗(yàn)結(jié)果分析 191
第6章 遷移學(xué)習(xí) 195
6.1 遷移學(xué)習(xí)發(fā)展概述 195
6.2 遷移學(xué)習(xí)的類型與模型 196
6.2.1 凍結(jié)源模型與微調(diào)源模型 197
6.2.2 神經(jīng)網(wǎng)絡(luò)遷移學(xué)習(xí)模型與分類器遷移學(xué)習(xí)模型 197
6.3 遷移學(xué)習(xí)方法實(shí)例指導(dǎo) 199
6.3.1 遷移學(xué)習(xí)應(yīng)用示例 199
6.3.2 實(shí)驗(yàn)結(jié)論 202
第7章 并行計(jì)算與交叉驗(yàn)證 203
7.1 并行計(jì)算 203
7.1.1 數(shù)據(jù)并行框架 204
7.1.2 模型并行框架 205
7.1.3 數(shù)據(jù)并行與模型并行的混合架構(gòu) 205
7.2 交叉驗(yàn)證 207
7.2.1 留出法 207
7.2.2 K折交叉驗(yàn)證 208
7.2.3 留一交叉驗(yàn)證 209
參考文獻(xiàn) 211