本書以同濟(jì)大學(xué)數(shù)學(xué)系編寫的《線性代數(shù)》(第五版),浙江大學(xué)編寫的《概率論與數(shù)理統(tǒng)計》(第四版),西安交通大學(xué)高等數(shù)學(xué)教研室編寫的《復(fù)變函數(shù)》(第四版),東南大學(xué)數(shù)學(xué)系編寫的《積分變換》(第五版)為基礎(chǔ),通過MATLAB軟件實(shí)現(xiàn)課后習(xí)題的求解,從更為基本的角度幫助學(xué)生學(xué)習(xí)MATLAB軟件,為學(xué)生理論聯(lián)系實(shí)際奠定應(yīng)用基礎(chǔ),同時增加了復(fù)變函數(shù)畫圖和可視化、矩陣分析中部分內(nèi)容的MATLAB實(shí)現(xiàn)和計算機(jī)仿真中常用的Mote
Carlo模擬。
本書可以作為本科生數(shù)學(xué)建模課程的擴(kuò)充輔導(dǎo)教材,也可以作為本科生數(shù)學(xué)實(shí)驗(yàn)課程的教材,同時也可以作為研究生學(xué)員矩陣分析課程的延展教材。
本科工程數(shù)學(xué)課程以線性代數(shù)概率論與數(shù)理統(tǒng)計復(fù)變函數(shù)積分變換四門課程為主體,其目的在于培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)知識解決實(shí)際問題的基本能力。隨著計算機(jī)及其軟件技術(shù)的日趨完善,MATLAB軟件在數(shù)學(xué)應(yīng)用于工程實(shí)踐方面發(fā)揮的作用越來越重要。
本書的作者多年來從事本科工程數(shù)學(xué)和數(shù)學(xué)建模教學(xué)的相關(guān)工作,通過對教學(xué)效果和經(jīng)驗(yàn)進(jìn)行分析總結(jié),對學(xué)生的交流反饋進(jìn)行匯總,我們發(fā)現(xiàn)了兩個現(xiàn)象:一是學(xué)生學(xué)完工程數(shù)學(xué)的課程以后,在面臨實(shí)際問題時依然無從下手;二是學(xué)生不會使用軟件求解工程數(shù)學(xué)中的基本問題,即便是課后習(xí)題中的小問題。很多學(xué)生反映,學(xué)習(xí)了工數(shù),理論無法與實(shí)際相聯(lián)系,根本不會用,這嚴(yán)重地制約了學(xué)生數(shù)學(xué)應(yīng)用能力的發(fā)展。盡管參加過數(shù)學(xué)建模課程理論及軟件培訓(xùn)并參加數(shù)學(xué)建模競賽的學(xué)生在這些方面好一些,但是在第二個現(xiàn)象上依然存在明顯的問題。受課時等各方面因素的制約,很多院校工程數(shù)學(xué)課程理論性較強(qiáng),同時,雖然介紹MATLAB和數(shù)學(xué)建模應(yīng)用的書籍琳瑯滿目,但是系統(tǒng)地以工程數(shù)學(xué)為角度介紹MATLAB軟件的書籍還很匱乏,而這正是有效幫助學(xué)生對工程數(shù)學(xué)學(xué)以致用,并在應(yīng)用中反饋理解的有效工具,為此我們編寫了這本書。
本書可以作為本科生數(shù)學(xué)建模課程的擴(kuò)充輔導(dǎo)教材,也可以作為本科生數(shù)學(xué)實(shí)驗(yàn)課程的教材,也是我院進(jìn)行數(shù)學(xué)教學(xué)課程改革的實(shí)驗(yàn)教材,同時也可以作為研究生學(xué)員《矩陣分析》課程的延展教材。
司守奎老師從事數(shù)學(xué)建模工作多年,他指導(dǎo)學(xué)生參加各類數(shù)學(xué)建模競賽,共獲得全國大學(xué)生數(shù)學(xué)建模競賽一等獎14項(xiàng),二等獎24項(xiàng);全軍軍事數(shù)學(xué)建模競賽,特等獎1項(xiàng),一等獎7項(xiàng);國際大學(xué)生數(shù)學(xué)建模競賽,一等獎1項(xiàng),二等獎3項(xiàng);全國研究生數(shù)學(xué)建模競賽,一等獎3項(xiàng),二等獎39項(xiàng)。
第1章
線性代數(shù)
1.1 行列式
1.2矩陣運(yùn)算及線性變換
1.3 矩陣初等變換與線性方程組
1.4 相似矩陣與二次型
習(xí)題1
第2章 矩陣分析基礎(chǔ)
2.1 范數(shù)理論
2.2 矩陣的奇異值分解及應(yīng)用
2.3 廣義逆矩陣
2.4 線性代數(shù)中的反問題
習(xí)題2
第3章 概率論與數(shù)理統(tǒng)計
3.1 隨機(jī)事件及其概率
3.2 隨機(jī)變量及其分布
3.3 隨機(jī)變量的數(shù)字特征
3.4 大數(shù)定律和中心極限定理
3.5 一些常用的統(tǒng)計量和統(tǒng)計圖
3.6 參數(shù)估計
3.7 假設(shè)檢驗(yàn)
3.8 方差分析
3.9 回歸分析
3.10 Bootstuap方法
3.11 概率論與數(shù)理統(tǒng)計的一些應(yīng)用
習(xí)題3
第4章 Monte Carlo模擬
4.1 隨機(jī)數(shù)和隨機(jī)抽樣
4.2 Monte Carlo法的數(shù)學(xué)基礎(chǔ)及步驟
4. 3 定積分的計算
4.4 幾何概率的隨機(jī)模擬
4.5 排隊(duì)模型
4.6 存儲問題
4.7 整數(shù)規(guī)劃
4.8 求偏微分方程的數(shù)值解
4.9 競賽擇優(yōu)問題
習(xí)題4
第5章
復(fù)變函數(shù)
5.1 復(fù)數(shù)與復(fù)變函數(shù)
5.2 復(fù)變函數(shù)的可視化
5. 3 復(fù)變函數(shù)的零點(diǎn)
5.4 分形圖案
5.5 復(fù)變函數(shù)的積分
5.6 留數(shù)與閉曲線積分的計算
5.7 共形映射
習(xí)題5
第6章 積分變換
6.1 傅里葉積分
6.2 傅里葉變換
6.3 傅里葉變換的性質(zhì)
6.4 傅里葉變換的卷積與相關(guān)函數(shù)
6.5 傅里葉變換的應(yīng)用
6.6 拉普拉斯變換的概念
6.7 拉普拉斯變換的性質(zhì)
6.8 拉普拉斯逆變換
6.9 拉普拉斯變換的卷積
6.10 拉普拉斯變換的應(yīng)用
習(xí)題6
參考文獻(xiàn)